

Hughes Information Technology Systems
Upper Marlboro, Maryland

305-CD-025-002

EOSDIS Core System Project

Release B SDPS Ingest Subsystem
Design Specification

March 1996

Hughes Information Technology Systems

Upper Marlboro, Maryland

Release B SDPS Ingest Subsystem
Design Specification
for the ECS Project

March 1996

Prepared Under Contract NAS5-60000
CDRL Item #046

SUBMITTED BY

Rick Kochhar /s/ 3/25/96

Rick Kochhar, Release B CCB Chairman Date
EOSDIS Core System Project

ii 305-CD-025-002

This page intentionally left blank.

iii 305-CD-025-002

Preface

This document is one of eighteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release B of the ECS project. A complete list of the design specification
documents is given below. Of particular interest are documents number 305-CD-020, which
provides an overview of the subsystems and 305-CD-039, the Data Dictionary, for those reviewing
the object models in detail.

The SDPS and CSMS subsystem design specification documents for Release B of the ECS Project
include:

305-CD-020 Release B Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-021 Release B SDPS Client Subsystem Design Specification

305-CD-022 Release B SDPS Interoperability Subsystem Design Specification

305-CD-023 Release B SDPS Data Management Subsystem Design Specification

305-CD-024 Release B SDPS Data Server Subsystem Design Specification

305-CD-025 Release B SDPS Ingest Subsystem Design Specification

305-CD-026 Release B SDPS Planning Subsystem Design Specification

305-CD-027 Release B SDPS Data Processing Subsystem Design Specification

305-CD-028 Release B CSMS Segment Communications Subsystem Design Speci-
fication

305-CD-029 Release B CSMS Segment Systems Management Subsystem Design
Specification

305-CD-030 Release B GSFC Distributed Active Archive Center Design Specifica-
tion

305-CD-031 Release B LaRC Distributed Active Archive Center Design Specifica-
tion

305-CD-033 Release B EDC Distributed Active Archive Center Design Specification

305-CD-034 Release B ASF Data Center Distributed Active Archive Center Design
Specification

305-CD-035 Release B NSIDC Distributed Active Archive Center Design Specifica-
tion

305-CD-036 Release B JPL Distributed Active Archive Center Design Specification

305-CD-037 Release B ORNL Distributed Active Archive Center Design Specifica-
tion

305-CD-038 Release B System Monitoring and Coordination Center Design Specifi-
cation

305-CD-039 Release B Data Dictionary for Subsystem Design Specification

iv 305-CD-025-002

Object models presented in this document have been exported directly from CASE or DBMS tools
and in some cases contain too much detail to be easily readable within hard copy page constraints.
The reader is encouraged to view these drawings on line using the Portable Document Format
(PDF) electronic copy available via the ECS Data Handling System (EDHS) at: URL http://
edhs1.gsfc.nasa.gov.

This document is a formal contract deliverable with an approval code of 2; as such it requires
Government review and approval prior to acceptance and use. This document is under ECS
contractor configuration control. Once this document is approved, Contractor approved changes
are handled in accordance with Class I and Class II change control requirements described in the
EOS Configuration Management Plan, and changes to this document shall be made by document
change notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Systems
1616 McCormick Drive
Upper Marlboro, MD 20774-5372

v 305-CD-025-002

Abstract

The Ingest Subsystem consists of a collection of hardware and software that supports the ingest of
data into ECS repositories. This volume presents the overview and critical design of the Ingest
CSCI and Ingest Client HWCI elements that comprise this subsystem.

Keywords: Ingest, PDL, CSCI, HWCI, client, host, working, storage, network, polling, hard-
media, preprocessing, session, request, metadata, GUI, Level-0, Release-B.

vi 305-CD-025-002

This page intentionally left blank.

vii 305-CD-025-002

Change Information Page

List of Effective Pages

Page Number Issue
Title Submitted as Final

iii through xiv Submitted as Final

1-1 and 1-2 Submitted as Final

2-1 through 2-4 Submitted as Final

3-1 through 3-24 Submitted as Final

4-1 through 4-158 Submitted as Final

5-1 through 5-12 Submitted as Final

A-1 through A-18 Submitted as Final

B-1 through B-42 Submitted as Final

C-1 through C-4 Submitted as Final

AB-1 through AB-6 Submitted as Final

GL-1 through GL-12 Submitted as Final

Document History

Document Number Status/Issue Publication Date CCR Number
305-CD-025-001 Preliminary October 1995 95-0765

305-CD-025-002 Submitted as Final March 1996 96-0230

viii 305-CD-025-002

Contents

1. Introduction

1.1 Identification ... 1-1
1.2 Scope ... 1-1
1.3 Document Organization .. 1-1
1.4 Status and Schedule .. 1-2

2. Related Documentation

3. Ingest Subsystem Overview

3.1 Introduction and Context .. 3-1
3.1.1 Ingest Subsystem Context Diagram .. 3-2

3.2 Ingest Subsystem Overview .. 3-2
3.2.1 Ingest Subsystem Configuration Item (CI) List .. 3-2
3.2.2 Ingest Subsystem Design Rationale .. 3-2
3.2.3 Ingest Subsystem Design Paradigms ... 3-16
3.2.4 Ingest Subsystem Use of Key Design Mechanisms ... 3-17
3.2.5 Ingest Subsystem Key Design Features ... 3-21

4. INGST - Ingest CSCI

4.1 CSCI Overview ... 4-1
4.2 CSCI Context .. 4-2
4.3 Ingest CSCI Object Model... 4-2

 4.3.1 CsGateWay Class .. 4-9
4.3.2 DsCIDescriptor Class .. 4-9
4.3.3 DsClRequest Class ... 4-10
4.3.4 DsGlParameter Class ... 4-10
4.3.5 DsGlParameterList Class ... 4-11
4.3.6 DsStResourceProvider Class ... 4-11
4.3.7 DsStagingDisk Class .. 4-12
4.3.8 EcPFManagedServer Class .. 4-12
4.3.9 InBOBinMetadata Class .. 4-13
4.3.10 InBOMetadata Class .. 4-14
4.3.11 InDAN Class .. 4-15
4.3.12 InDBAccess Class .. 4-16

ix 305-CD-025-002

4.3.13 InDataPreprocessList Class ... 4-19
4.3.14 InDataPreprocessTask Class .. 4-21
4.3.15 InDataServerInsertionTask Class ... 4-23
4.3.16 InDataTransferTask Class .. 4-25
4.3.17 InDataTypeTemplate Class .. 4-28
4.3.18 InExternalDataProviderInfo Class ... 4-30
4.3.19 InFDFData Class .. 4-31
4.3.20 InFile Class .. 4-32
4.3.21 InFileTypeTemplate Class ... 4-34
4.3.22 InGRIBData Class ... 4-37
4.3.23 InGUISession Class ... 4-38
4.3.24 InGranuleAsync_CB Class .. 4-38
4.3.25 InGranuleAsync_SB Class ... 4-40
4.3.26 InGranuleMessageB Class .. 4-42
4.3.27 InGranuleServer_CB Class .. 4-43
4.3.28 InGranuleServer_SB Class .. 4-43
4.3.29 InHDFMetadata Class .. 4-45
4.3.30 InHistoryLog Class .. 4-46
4.3.31 InIngestMainWindow Class ... 4-47
4.3.32 InInteractiveIngestB Class ... 4-48
4.3.33 InLongDAA Class ... 4-50
4.3.34 InLongDDN Class ... 4-51
4.3.35 InMediaIngest Class ... 4-52
4.3.36 InMessage Class ... 4-54
4.3.37 InMetadata Class .. 4-55
4.3.38 InNextAvailableID Class ... 4-56
4.3.39 InPVMetadata Class ... 4-57
4.3.40 InPollingIngestSession Class ... 4-59
4.3.41 InPollingThreshold Class ... 4-62
4.3.42 InReformatData Class .. 4-62
4.3.43 InRequest Class .. 4-63
4.3.44 InRequestController Class ... 4-69
4.3.45 InRequestFileInfo Class ... 4-71
4.3.46 InRequestManager Class ... 4-72
4.3.47 InRequestManager_C Class ... 4-76
4.3.48 InRequestManager_S Class ... 4-77
4.3.49 InRequestProcessData Class .. 4-78
4.3.50 InRequestProcessHeader Class .. 4-79
4.3.51 InRequestSummaryData Class ... 4-83

x 305-CD-025-002

4.3.52 InRequestSummaryHeader Class ... 4-86
4.3.53 InSDMetadata Class ... 4-87
4.3.54 InScienceData Class ... 4-88
4.3.55 InServer Class .. 4-88
4.3.56 InServerExtRPC_C Class .. 4-89
4.3.57 InServerExtRPC_S Class ... 4-90
4.3.58 InServerIntRPC_C Class ... 4-91
4.3.59 InServerIntRPC_S Class .. 4-91
4.3.60 InSession Class .. 4-92
4.3.61 InSessionEcsRPC_C Class .. 4-94
4.3.62 InSessionEcsRPC_S Class ... 4-95
4.3.63 InSessionExtRPC_C Class .. 4-96
4.3.64 InSessionExtRPC_S Class ... 4-96
4.3.65 InSessionInfo Class .. 4-97
4.3.66 InSessionIntRPC_C Class .. 4-99
4.3.67 InSessionIntRPC_S Class .. 4-100
4.3.68 InShortDAA Class ... 4-100
4.3.69 InShortDDN Class ... 4-101
4.3.70 InSnowIceData Class ... 4-102
4.3.71 InSourceMCF Class ... 4-103
4.3.72 InTOMSData Class .. 4-105

4.4 Ingest CSCI Dynamic Model ...4-106
4.4.1 Automated Network Ingest (Get) Scenario ..4-106
4.4.2 Polling Ingest (Files) Scenario ...4-110
4.4.3 Polling Ingest (Delivery Record) Scenario ..4-111
4.4.4 Interactive Ingest Scenario ...4-112
4.4.5 Hard Media Ingest Scenario ...4-114
4.4.6 Ingest History Log Viewing Scenario ..4-116
4.4.7 Operator Ingest Status Monitoring Scenario ..4-118
4.4.8 Interactive Ingest Operator Status Monitoring Scenario4-119
4.4.9 Operator Request Control Scenario ...4-121
4.4.10 Preprocessing Scenario ..4-122

4.5 CSCI Structure ...4-126
4.5.1 Automatic Network Ingest Interface ..4-129
4.5.2 Polling Ingest Client Interface CSC ...4-130
4.5.3 Ingest Request Processing CSC ...4-131
4.5.4 Ingest Data Transfer CSC ..4-134
4.5.5 Ingest Data Preprocessing CSC ...4-135
4.5.6 Operator Ingest Interface CSC ...4-142

xi 305-CD-025-002

4.5.7 Interactive Ingest Interface CSC ..4-145
4.5.8 Ingest DBMS CSC ...4-147
4.5.9 Ingest Administration Data CSC ...4-147
4.5.10 Peripherals CSC ...4-147
4.5.11 Viewing Tools CSC ...4-147
4.5.12 Data Storage Software CSC ...4-148
4.5.13 Resource Administration CSC ...4-148
4.5.14 Client Interfaces CSC ..4-148

4.6 Ingest CSCI Management and Operation .. 4-148
4.6.1 System Management Strategy ..4-148
4.6.2 Operator Interfaces ...4-154
4.6.3 Ingest Production Reports ..4-155
4.6.4 Sustaining Engineering Interface to Data Processing Templates4-157

5. ICLHW - Ingest Client HWCI

5.1 Introduction ... 5-1
5.1.1 HWCI Design Drivers .. 5-2
5.1.2 HWCI Structure ... 5-5
5.1.3 Failover and Recovery Strategy .. 5-11

Appendix A. Requirements Trace

Appendix B. Program Design Language (PDL)

Appendix C. Ingest Recovery Analysis

Acronyms and Abbreviations

Figures

3.1-1 Ingest Subsystem Context Diagram ...3-3
3.1-2 Ingest Subsystem Hardware Diagram ...3-11
4.3-1. In_Ingest_Request_Processing Object Model Diagram ...4-3
4.3-2. In_Ingest_Granule Processing Object Model Diagram ..4-4
4.3-3. In_Ingest_PreProcessing Object Model Diagram ..4-5
4.3-4. In_Ingest_Database_Object Model Diagram ...4-6
4.3-5. In_Ingest_Session Object Model Diagram ..4-7
4.3-6. In_Ingest_Session_Manager Object Model Diagram ..4-8
4.4-1. In_Automated_Network_Ingest_Get_Event_Trace_Diagram4-109

xii 305-CD-025-002

4.4-2. In_Polling_Files_Ingest_Event_Trace Dynamic Model ..4-111
4.4-3. In_Polling_Delivery_Record_Ingest_Event Trace Diagram4-112
4.4-4. In_Interactive_Ingest_Event_Trace_Diagram_Dynamic Model4-114
4.4-5. In_Hard_Media_Ingest_Event_Trace_Diagram Dynamic Model4-116
4.4-6. In_Ingest_History_Log_Viewing_Event_Trace_Diagram Dynamic Model4-117
4.4-7. In_Ingest_Operator_Status_Monitoring Event Trace Diagram4-119
4.4-8. In_Interactive_Ingest_Status_Monitoring_Event_Trace Diagram4-120
4.4-9. In_Ingest_Operator_Request_Update_Event_Trace Diagram4-122
4.4-10. In_Ingest_Preprocessing Scenario1 Event Trace Diagram ..4-125
4.5-1. Ingest CSC Interaction ...4-128
4.5-2. Automated Network Ingest Interface ...4-129
4.5-3. Ingest Polling CSC ...4-131
4.5-4. Ingest Request Processing CSC ...4-132
4.5-5. Ingest Preprocessing CSC Data Flow ..4-136
4.5-6. Media Ingest Capability of the Operator-Ingest Interface CSC..................................4-144
4.5-7 Request Monitoring Capability of the Operator Ingest Interface CSC4-144
4.5.8 Request Control Capability of Operator Ingest Interface CSC4-144
4.5-9 Interactive Ingest Interface CSC ...4-146
4.5-10 Sample ECS User Ingest Directory Structure ...4-146
5.1-1 Ingest HWCI Block Diagram ...5-6
5.1-2 Ingest Network Connectivity ...5-8

Tables

3.1-1 Ingest Subsystem Interfaces .. 3-4
3.1-2 External Interface Protocols ... 3-13
3.2-2 Ingest Performance and Accountability Parameters .. 3-19
3.2-3 Ingest Tunable Parameters ... 3-22
4.2-1. Ingest CSCI Service Interfaces ...4-2
4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram4-106
4.4-2. Polling Ingest (Files) Event Trace ...4-110
4.4-3. Polling Ingest (Delivery Record) Event Trace Diagram ...4-111
4.4-4. Interactive Ingest Event Trace ...4-113
4.4-5. Hard Media Ingest Event Trace ...4-115
4.4-6. Ingest History Log Event Trace Diagram ..4-116
4.4-7. Operator Ingest Status Monitoring Event Trace ..4-118
4.4-8. User Ingest Status Monitoring Event Trace ...4-120
4.4-9. Operator Request Update Event Trace ..4-121
4.4-10. Preprocessing Event Trace ..4-123
4.5-1. Ingest CSCI Components ...4-126

xiv 305-CD-025-002

This page intentionally left blank.

1-1 305-CD-025-002

1. Introduction

1.1 Identification
This Ingest Subsystem Design Specification for the ECS Project, Contract Data Requirement List
(CDRL) item 046, with requirements specified in data item description (DID) 305/DV2, is a
required deliverable under the Earth Observing System Data and Information System (EOSDIS)
Core System (ECS), contract NAS5-60000. This publication is part of a series of documents
comprising the Science and Communications Development Office design specification for the
Communications and System Management Segment (CSMS) and the Science and Data Processing
Segment (SDPS) for Release B.

1.2 Scope
The Ingest Subsystem Design Specification defines the Release B detailed design of the Ingest
Subsystem. It defines the Ingest Subsystem computer software and hardware architectural design,
as well as subsystem design based on Level 2 requirements.

This subsystem is on a formal development track. It is released in and reviewed at the formal
Release B Critical Design Review.

This document reflects the February 7, 1996 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11 dated December
6, 1994 submitted via contract correspondence number ECS 194-00343.

1.3 Document Organization
The document is organized to describe the Ingest Subsystem design as follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the Subsystem, focusing on the high-level design concept. This
provides general background information to put Ingest into context.

Section 4 contains the structure of the computer software configuration item (CSCI) comprising
the Ingest Subsystem. Included are CSCI context diagrams, the CSCI object model, the CSCI
dynamic model (scenarios), and the CSCI physical model (executables).

Section 5 contains the hardware configuration item (HWCI) design of the Ingest Subsystem.

Appendix A provides the Level 4 requirements-to-design mapping matrix for use in verifying
coverage of the Level 4 requirements.

Appendix B contains Program Design Language (PDL) for the non-trivial object class methods
described in Section 4.

Appendix C contains a table of major Ingest subsystem faults and the actions taken to recover.

1-2 305-CD-025-002

Appendix D contains transaction load analysis information that was used to size Ingest data bases.

An Acronym list and Glossary are provided.

1.4 Status and Schedule
This submittal of DID 305/DV2 meets the milestone specified in the CDRL of NASA contract
NAS5-60000. The submittal was originally reviewed during the SDPS Preliminary Design Review
(PDR) and reflects changes to the design which resulted from that review. The submittal was
subsequently reviewed during the SDPS/CSMS Interim Design Review (IDR) and reflects changes
to the design which resulted from that review. The IDR also triggered a number of follow up
actions in response to Review Item Discrepancies (RID), the results of which are incorporated into
the Release B Critical Design Review (CDR) version of this document.

2-1 305-CD-025-002

2. Related Documentation

2.1 Parent Documents
The parent document is the document from which the scope and content of this Ingest Subsystem
Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

305-CD-002-002 Science and Data processing Segment (SDPS) Design Specification for
the ECS Project

2.2 Applicable Documents
The following documents are referenced within this Subsystem Design Specification, or are
directly applicable, or contain policies or other directive matters that are binding upon the content
of this document.

209-CD-001-003 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet

209-CD-002-003 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-005-005 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-005 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-003 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-004 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-010-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Langley Research Center (LaRC) Distributed Active Archive Center
(DAAC)

209-CD-011-003 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

209-CD-013-003 Interface Control Document Between EOSDIS Core System (ECS) and
Landsat-7

209-CD-021-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Alaska SAR Facility (ASF) Distributed Active Archive Center
(DAAC)

2-2 305-CD-025-002

209-CD-022-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Oak Ridge National Laboratory (ORNL) Distributed Active Archive
Center (DAAC)

209-CD-027-001 Interface Control Document Between EOSDIS Core System (ECS) and
SAGE-III

305-CD-003-002 Communications and System Management Segment (CSMS) Design
Specification for the ECS Project

305-CD-004-001 Overview of Release A System Design Specification

305-CD-009-001 Release A SDPS Ingest Subsystem Design Specification

305-CD-020-002 Release B Overview of the SDPS and CSMS Segment Design
Specification

305-CD-025-001 Release B SDPS Ingest Subsystem Design Specification for the ECS
Project

305-CD-028-002 Release B CSMS Segment Communications Subsystem Design
Specification (IDR Version)

305-CD-030-002 Release B GSFC DAAC Design Specification

305-CD-031-002 Release B LaRC DAAC Design Specification

305-CD-033-002 Release B EDC DAAC Design Specification

305-CD-034-002 Release B ASF DAAC Design Specification

305-CD-035-002 Release B NSIDC DAAC Design Specification

305-CD-036-002 Release B JPL DAAC Design Specification

305-CD-037-002 Release B ORNL DAAC Design Specification

308-CD-001-005 Software Development Plan for the ECS Project

313-CD-004-001 Release A Communications and System Management Segment (CSMS)
and Science Data Processing Segment (SDPS) Internal Interface
Control Document for the ECS Project

313-CD-006-002 Release B SDPS/CSMS Internal Interface Control Document

420-TP-010-001 Transition to Release B (Technical Paper)

423-41-03 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

515-CD-002-002 Release B Availability Models/Predictions for the ECS Project

605-CD-002-001 Release B SDPS/CSMS Operations Scenarios

2.3 Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do
amplify and clarify the information presented in this document. These documents are not binding
on the content of this Subsystem Design Specifications.

2-3 305-CD-025-002

205-CD-002-002 Science User's Guide and Operations Procedure Handbook for the ECS
Project, Part 4: Software Developer’s Guide to Preparation, Delivery,
Integration and Test with ECS

206-CD-001-002 Version 0 Analysis Report for the ECS Project

302-CD-003-001 Release B Facilities Plan for the ECS Project

101-303-DV1-001 Individual Facility Requirements for the ECS Project

194-317-DV1-001 Prototyping and Studies Plan for the ECS Project

318-CD-000-XXX Prototyping and Studies Progress Report for the ECS Project (monthly)

333-CD-003-002 SDP Toolkit Users Guide for the ECS Project

601-CD-001-004 Maintenance and Operations Management Plan for the ECS Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1 -- ECS Overview

604-CD-002-002 Operations Concept for the ECS Project: Part 2B -- Release B

604-CD-003-002 Operations Concept for the ECS Project: Part 2A -- ECS Release A

101-620-OP2-001 List of Recommended Maintenance Equipment for the ECS Project

194-703-PP1-001 System Design Review (SDR) Presentation Package for the ECS Project

194-813-SI4-002 Planning and Scheduling Prototype Results Report for the ECS Project

194-813-SI4-003 DADS Prototype One FSMS Product Operational Evaluation [for the
ECS Project]

194-813-SI4-004 DADS Prototype One STK Wolfcreek 9360 Automated Cartridge
System Hardware Characterization Report [for the ECS Project]

813-RD-009-001 DADS Prototype Two Multi-FSMS Product Integration Evaluation [for
the ECS Project]

828-RD-001-002 Government Furnished Property for the ECS Project

160-TP-002-001 Version 1 Data Migration Plan [for the ECS Project] White Paper

193-WP-118-001 Algorithm Integration and Test Issues for the ECS Project

193-WP-611-001 Science-based System Architecture Drivers for the ECS Project,
Revision 1.0

193-WP-623-001 ECS Evolutionary Development White Paper

194-TP-548-001 User Scenario Functional Analysis [for the ECS Project]

194-TP-569-001 PDPS Prototyping at ECS Science and Technology Laboratory,
Progress Report #4

194-WP-901-002 EOSDIS Core System Science Information Architecture, White Paper,
Working Paper

194-WP-902-002 ECS Science Requirements Summary, White Paper, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, White Paper,
Working Paper

194-WP-925-001 Science Software Integration and Test, White Paper, Working Paper

2-4 305-CD-025-002

222-TP-003-008 Release Plan Content Description for the ECS Project

410-TD-001-002 ECS User Interface Style Guide, Technical Data

420-WP-001-001 Maximizing the Use of COTS Software in the SDPS SDS Software
Design [for the ECS Project], White Paper

430-TP-001-001 SDP Toolkit Implementation with Pathfinder SSM/I Precipitation Rate
Algorithm [for the ECS Project], Technical Paper

440-TP-001-001 Science Data Server Architecture Study [for the ECS Project]

440-TP-014-001 ECS Ingest Subsystem Topology Analysis Technical Paper

423-16-01 Goddard Space Flight Center, Data Production Software and Science
Computing Facility (SCF) Standards and Guidelines

423-16-02 Goddard Space Flight Center, PGS Toolkit Requirements Specification
for the ECS Project

423-41-02 Goddard Space Flight Center, Functional and Performance
Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) Core System

540-022 Goddard Space Flight Center, Earth Observing System (EOS)
Communications (Ecom) System Design Specification

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document
Between EDOS and the EOS Ground System (EGS)

3-1 305-CD-025-002

3. Ingest Subsystem Overview

3.1 Introduction and Context
The Ingest Subsystem contains a collection of hardware and software that supports the ingest of
data into ECS repositories on a routine and ad hoc basis and triggers subsequent archiving and/or
processing of the data. The Ingest Subsystem configuration must be flexible to support a variety
of data formats and structures, external interfaces, and ad-hoc ingest tasks. Data processing and
storage functions to be performed by the Ingest Subsystem and ingest clients vary according to
attributes of the ingested data such as data type, data format, and the level to which the ingested
data has been processed.

From a software perspective, the Ingest Subsystem is organized into a collection of tools from
which those required for a specific situation can be configured. The resultant configuration is
called an ingest client. Ingest clients may exist in a static configuration to service a routine external
interface, or they may be specially configured and exist only for the duration of a specific ad hoc
ingest task. The ingest clients provide a single virtual interface point for the receipt of all external
data to be archived within the SDPS. Individual ingest clients are established to support each
unique interface, allowing the interface parameters to be modified as interface and mission
requirements evolve. Ingest data preprocessing, metadata extraction, and metadata validation is
performed by the ingest clients on any incoming data, as required.

Data is staged to one of two areas depending on the data level, data type, and other data set specific
characteristics:

• Level 0 (L0) data from ongoing missions are staged to the highly-reliable Ingest Subsystem
working storage area. Metadata is extracted and quality checked on the working storage
area. The staged data are accessible by the Planning and Data Processing Subsystem which
processes the L0 data into higher-level products. The L0 data are transferred to an archive
data repository in the Ingest or Data Server Subsystem for long-term storage.

• Non-L0 data (such as ancillary data and L1a-L4 data from external facilities) are staged
directly to the working storage area in the Data Server Subsystem. Extraction of metadata
and quality checking are performed on this data upon the Data Server Subsystem processor
hardware. Data that are required to support ECS data processing are accessible by the
Planning and Data Processing Subsystem fro working storage. The non-L0 data are
transferred to a Data Server Subsystem archive data respiratory for long-term storage.

The hardware components of the Ingest Subsystem are similar to those of the Data Server
Subsystem, but are specialized to meet the ingest requirements at a given site. Specialized forms
of ingest clients may be incorporated into site unique architectures, and additional processing
hardware may also be incorporated at those sites where special transformations must be
accomplished on ingest data sets.

3-2 305-CD-025-002

3.1.1 Ingest Subsystem Context Diagram

The Ingest Subsystem must be capable of accepting data from a variety of sources including both
electronic network interfaces and hard media. Early interface testing is performed at Interim
Release-1 (IR-1) for interfaces at the Sensor Data Processing Facility (SDPF), the Tropical
Rainfall Measuring Mission (TRMM) Science Data Information System (TSDIS), and the NOAA
Affiliated Data Centers (ADCs). The NOAA ADCs include the National Environmental Satellite,
Data, and Information Service (NESDIS) and the GSFC Data Assimilation Office (DAO). Release
A interfaces include the SDPF, TSDIS, NOAA ADCs (NESDIS and the DAO), the Science
Computing Facilities (SCFs) (for algorithm delivery), the Data Server Subsystem (for archiving),
science users, clients (operations staff), and Version 0 DAACs and other ECS DAACs. Early
interface testing is performed after Release A for the EOS Data and Operations System (EDOS)
and Landsat-7 Processing System (LPS). The EDOS and LPS interfaces are fully functional at
Release B. Interfaces are added at Release B for the Landsat International Ground Stations (IGS)
and Image Assessment System (IAS), ASTER Ground Data System (GDS), Release B Science
Computing Facilities (SCFs), Flight Dynamics Facility (FDF), SeaWinds, SAGE III, ALT/
RADAR, ACRIM, and DAAC-unique interfaces (primarily at ASF). Additional interfaces are
planned to be implemented in future releases. The Ingest Subsystem context diagram is shown in
Figure 3.1-1. Specific details on the interfaces are included in Table 3.1-1.

The following assumptions have been made regarding the characteristics of the data to be ingested:

• Receipt of data from external data providers is assumed to be random, although generally
clustered about an expected availability time.

• Data received by the Ingest subsystem has been pre-defined within ECS with regard to
expected metadata and metadata characteristics; data types, files, and formats; and means
of delivery to ECS.

• The data volume and frequency of receipt of received data is consistent with the ECS
technical baseline dated February 7, 1996.

3.2 Ingest Subsystem Overview

3.2.1 Ingest Subsystem Configuration Item (CI) List

The Ingest Subsystem is composed of one Computer System Configuration Item (CSCI) and one
Hardware Configuration Item (HWCI):

• Ingest CSCI

• Ingest Client HWCI

These CIs are discussed in detail in subsections 4 and 5, respectively.

3.2.2 Ingest Subsystem Design Rationale

Main drivers for the design are:

• the high reliability required for Level 0 data ingest

• the required extensibility of the ingest client implementation to future external interfaces

3-3 305-CD-025-002

Figure 3.1-1. Ingest Subsystem Context Diagram

Ingest

EDOS

1 1

S DP F

2 2

ADC

3

Landsat-7
LPS

4

TSDIS

5

S CF

6

FDF

8

8

DAA Cs
9

Interoperab ility

11
11

Data
Server

12

Operations
S taff

1313

Version 0

Users

15

16
16

P rocessing

18

Landsat-7
IAS

19

Landsat-7
IGSs

20

ACRIM

21

SeaWinds

22

SA GE I II

23

A SF (ERS,
JERS,

RADARSAT)

A STER

25

24

MSS/SMC

14 14

3-4 305-CD-025-002

Table 3.1-1. Ingest Subsystem Interfaces (1 of 5)

Flow
No.

Source Destination Data Types Data Volume Frequency

13 Ingest Operations
Staff

Ingest Status less than 1
MB

in response to request

13 Ingest Operations
Staff

Ingest Threshold
Update Status

less than 1
MB

in response to request

13 Ingest Operations
Staff

Ingest Log less than 1
MB

in response to request

12 Ingest Data Server Standard Products greater than
1 GB

as required for archiving

12 Ingest Data Server Metadata between 1
MB and 1 GB

as required for archiving

12 Ingest Data Server Ancillary Data greater than
1 GB

as required for archiving

12 Ingest Data Server Correlative Data greater than
1 GB

as required for archiving

12 Ingest Data Server Calibration Data between 1
MB and 1 GB

as required for archiving

12 Ingest Data Server Documents between 1
MB and 1 GB

as required for archiving

12 Ingest Data Server Orbit/Attitude Data between 1
MB and 1 GB

as required for archiving

12 Ingest Data Server Algorithms greater than
1 GB

as required for archiving

12 Ingest Data Server Special Products greater than
1 GB

as required for archiving

12 Ingest Data Server L0 Data greater than
1 GB

as required for archiving

12 Ingest Data Server Quick Look Data between 1
MB and 1 GB

as required for archiving

12 Ingest Data Server QA Data between 1
MB and 1 GB

as required for archiving

12 Ingest Data Server Resource Allocation /
Deallocation Requests

less than 1
MB

on receipt of data

12 Ingest Data Server Data Insert Request less than 1
MB

on receipt of data

1 Ingest EDOS Acceptance Notification
File

less than 1
MB

upon completion of data ingest
into DSS

8* Ingest FDF Data Delivery Notice less than 1
MB

upon completion of data insert
into DSS

11 Ingest Interopera-
bility

Search Request less than 1
MB

as required for archiving

11 Ingest Interopera-
bility

Advertisement less than 1
MB

when capability changes

.

3-5 305-CD-025-002

Flow
No.

Source Destination Data Types Data Volume Frequency

11* Ingest Interopera-
bility

Subscription less than 1
MB

in response to request

14 Ingest MSS/SMC Ingest status less than 1
MB

as performance and configura-
tion parameters change in state

14 Ingest MSS/SMC Ingest log less than 1
MB

as reportable events occur

18 Ingest Processing L0 data greater than
1 GB

as requested by Processing for
L0 to higher level processing

16 Ingest Users Ingest Status less than 1
MB

as requested

21* ACRIM Ingest L1A data between 1
MB and 1 GB

TBD

3 ADC
(NES-
DIS and
GDAO)

Ingest Metadata less than 1
MB

several times a day

3 ADC
(NES-
DIS and
GDAO)

Ingest Ancillary Data between 1
MB and 1 GB

several times a day

3 ADC
(NES-
DIS and
GDAO)

Ingest Calibration Data, Correl-
ative Data, Documents

less than 1
MB

several times a day

24* ASF Ingest Data Products greater than
1 GB

several times a day

24* ASF Ingest Browse between 1
MB and 1 GB

several times a day

24* ASF Ingest Ancillary between 1
MB and 1 GB

several times a day

24* ASF Ingest Metadata less than 1
MB

several times a day

25* ASTER Ingest Data Products
(L1a, L1b data)

greater than
1 GB

daily

25* ASTER Ingest Ancillary greater than
1 GB

daily

25* ASTER Ingest Metadata between 1
MB and 1 GB

daily

25* ASTER Ingest Browse greater than
1 GB

daily

13 Client
Opera-
tions
Staff

Ingest ingest status requests less than 1
MB

as requested

13 Opera-
tions
Staff

Ingest ingest log requests less than 1
MB

as requested

Table 3.1-1. Ingest Subsystem Interfaces (2 of 5)

3-6 305-CD-025-002

Flow
No.

Source Destination Data Types Data Volume Frequency

13 Opera-
tions
Staff

Ingest ingest control requests less than 1
MB

as requested

13 Opera-
tions
Staff

Ingest ingest threshold control
requests

less than 1
MB

as requested

9 DAACs Ingest Ancillary Data greater than
1 GB

as required

9 DAACs Ingest Correlative Data greater than
1 GB

as required

9 DAACs Ingest Calibration Data between 1
MB and 1 GB

as required

9 DAACs Ingest QA Data between 1
MB and 1 GB

as required

1 EDOS Ingest PDSs (L0 Data) greater than
1 GB

several times a day

1* EDOS Ingest ADSs (Back-up L0 Data) greater than
1 GB

infrequently

1 EDOS Ingest PDS Delivery Record less than 1
MB

several times a day

1* EDOS Ingest Physical Media Unit De-
livery Record

less than 1
MB

infrequently

8* FDF Ingest Repaired Orbit Data between 1
MB and 1 GB

infrequently

11 Interop-
erability

Ingest Notification very low as requested

11 Interop-
erability

Ingest Advertisement Info. less than 1
MB

in response to request

4 Landsat
7 PS

Ingest Metadata less than 1
MB

several times a day

4 Landsat
7 PS

Ingest L0R Science Data 139.4
GB/day

several times a day

4 Landsat
7 PS

Ingest L0R Browse between 1
MB and 1 GB

several times a day

4 Landsat
7 PS

Ingest Data Availability Notice less than 1
MB

several times a day

4 Landsat
7 MOC

Ingest Activity Calendar between 1
MB and 1 GB

TBR

4 Landsat
7 PS

Ingest Payload Correction Data between 1
MB and 1 GB

several times a day

4 Landsat
7 PS

Ingest Mirror Scan Correction
Data

between 1
MB and 1 GB

several times a day

4 Landsat
7 PS

Ingest Calibration data between 1
MB and 1 GB

several times a day

Table 3.1-1. Ingest Subsystem Interfaces (3 of 5)

3-7 305-CD-025-002

Flow
No.

Source Destination Data Types Data Volume Frequency

4 Landsat
7 PS

Ingest Data Availability Notice less than 1
MB

several times a day

4 Landsat
7 PS

Ingest Browse Data greater than
1 GB

as required

4 Landsat
7 PS

Ingest Directory and Guide In-
formation

between 1
MB and 1 GB

infrequently

20 Landsat
7 IGS

Ingest Inventory Data between 1
MB and 1 GB

monthly

20 Landsat
7 IGS

Ingest Browse Data greater than
1 GB

monthly

19 Landsat
7 IAS

Ingest Calibration Data between 1
MB and 1 GB

infrequently

19 Landsat
7 IAS

Ingest Metadata between 1
MB and 1 GB

infrequently

14 MSS/
SMC

Ingest Ingest status requests less than 1
MB

in response to request

14 MSS/
SMC

Ingest Ingest log requests less than 1
MB

in response to request

23* SAGE
III

Ingest L0 Data between 1
MB and 1 GB

TBD

23* SAGE
III

Ingest Browse less than 1
MB

TBD

23* SAGE
III

Ingest Ancillary less than 1
MB

TBD

23* SAGE
III

Ingest Metadata less than 1
MB

TBD

23* SAGE
III

Ingest Definitive/predicted or-
bit data

less than 1
MB

TBD

23* SAGE
III

Ingest Expedited data less than 1
MB

TBD

6* SCF Ingest Ancillary, calibration,
correlative data

between 1
MB and 1 GB

as required

6* SCF Ingest Metadata less than 1
MB

as required

6* SCF Ingest Documents less than 1
MB

as required

6 SCF Ingest Algorithms/Updates between 1
MB and 1 GB

as required

2 SDPF Ingest L0 Data 65 MB/day -
MSFC
90 MB/day -
LaRC

daily

2 SDPF Ingest Housekeeping daily

2 SDPF Ingest Quick Look Data between 1
MB and 1 GB

three times a day

Table 3.1-1. Ingest Subsystem Interfaces (4 of 5)

3-8 305-CD-025-002

a. Items marked with an asterisk (*) in the Flow No. column are interfaces to be implemented in Release B.
b. Ingest uses the Advertisement Information to locate the relevant Data Servers with which it needs to

interact.
c. In the table, where an exact number is unavailable, the data volume is estimated as low (less than 1 MB),

medium (between 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the frequency column
The frequency information will be updated as the interfaces are fully defined.

• the demands which are imposed on ingest by the migration of Version 0 data from DAAC
repositories external to ECS; and

• other performance requirements related to data ingest

Flow
No.

Source Destination Data Types Data Volume Frequency

2 SDPF Ingest Predictive Orbit Data between 1
MB and 1 GB

daily

2 SDPF Ingest Definitive Orbit Data between 1
MB and 1 GB

daily

2 SDPF Ingest Data Availability Notice less than 1
MB

daily

2 SDPF Ingest Back-up Data between 1
MB and 1 GB

as required

22* SeaW-
inds

Ingest L0 Data between 1
MB and 1 GB

TBD

22* SeaW-
inds

Ingest Definitive/predicted or-
bit data

between 1
MB and 1 GB

TBD

22* SeaW-
inds

Ingest Expedited data between 1
MB and 1 GB

TBD

5 TSDIS Ingest Metadata between 1
MB and 1 GB

several times a day

5 TSDIS Ingest Data Availability Notice less than 1
MB

several times a day

5 TSDIS Ingest Data Products 60 (GB/day)
Processing
and Repro-
cessing

provided throughout the day

5 TSDIS Ingest Algorithms between 1
MB and 1 GB

as required

5 TSDIS Ingest Documents less than 1
MB

as required

5 TSDIS Ingest Browse Data 149 MB/day several times a day

5 TSDIS Ingest Directory less than 1
MB

as required

5 TSDIS Ingest Guide less than 1
MB

as required

16 Users Ingest Ingest Status Requests less than 1
MB

as required

15 Version
0

Ingest Migration Data greater than
1 GB

varies depending on migration
strategy

Table 3.1-1. Ingest Subsystem Interfaces (5 of 5)

3-9 305-CD-025-002

The Ingest Subsystem design incorporates the following measures in response to the above drivers:

• The need for high reliability to support the function of Level 0 science data ingest was
resolved by the logical and physical separation of the Ingest Subsystem (Level 0) working
storage instantiation from other ECS working storage. The ingest of Level 0 data has a very
high priority, and must be supported with high component reliability and availability.
Maintaining this level of reliability, maintainability, and availability (RMA) throughout the
entire SDPS would be prohibitively expensive. Separating a high RMA ingest complement
of hardware and software from other SDPS functions allows each subsystem within SDPS
to support only the level of RMA necessary to perform its required functions.

• The need for future extensibility was resolved by providing a separate ingest processing
component with template (i.e., table-driven) interface software that may be reused as new
interfaces are added or old interfaces modified. The external interfaces to be supported by
the ingest clients change over time as spacecraft and instruments are added and removed.
Each external interface must potentially be supported with a different data transfer
mechanism, format conversion, quality checking, metadata definition, and other attributes
unique to that data. Separating the performance of these functions from the Level 0 data
repository component minimizes or eliminates changes to the data server configuration as
mission requirements change.

• In addition, each new or modified external interface may require custom interface software
to facilitate the data transfer process. The long-term EOS program expects to add large
numbers of new interfaces over time. The Ingest Subsystem software is designed in a
modular fashion so as to minimize the development effort required for new or modified
interfaces.

• The volume and complexity of data provided from the Version 0 facilities to the ECS for
archival are critical design drivers for the ECS Ingest Subsystem. Over 600 data products
have been identified, ranging in volume from megabytes to hundreds of gigabytes. Total
volume is on the order of dozens of terabytes. Many of the data products are stored in some
form of Hierarchical Data Format (HDF); however, many more products are stored in other
formats. The Ingest Subsystem software is designed to generalize the mechanism by which
data is routinely stored within the SDPS, given a set of standalone tools used to prepare
Version 0 data. Version 0 "data preparation" includes retrieval from Version 0-specific
hard media, conversion to EOS-HDF, where required, and extraction of standard metadata.

• ECS satisfies explicit performance requirements with the design described in Sections 4
and 5 of this volume.

The following subsections elaborate upon the above design drivers.

3.2.2.1 Ingest RMA Architecture

A principal objective of separating ingest from other SDPS functions is to assure the high
reliability and availability of the system for Level 0 data ingest. Ingest availability requirements
are met through the use of high reliability components in redundant configurations, as necessary.
The following paragraphs provide additional detail on ingest RMA requirements and how the
ingest architecture ensures that these requirements will be met.

3-10 305-CD-025-002

The principal Level 0 data sources (e.g., EDOS, SDPF) each support a data driven architecture that
processes data within 24 hours or less from receipt of the data from the spacecraft. Once the data
is processed into Production Data Sets (PDSs), the data is transferred to ECS in a timely fashion
for archiving and any required higher level processing. Typically, data transfer must be completed
within several hours to free up resources at the Level 0 processing sites, as new data sets are being
received on a nearly continuous basis. The Level 0 data sources provide long term archiving of the
PDSs in the event that data is corrupted or lost in the transfer to ECS or within ECS itself. While
it is possible to access these archived data sets if they are needed, it is unattractive to do so from
an operational standpoint due to the added time and complexity of pulling the data from the deep
archive and staging it for transfer. Three stringent RMA requirements are levied on the Ingest
Subsystem to mitigate the need for frequently retrieving data from the Level 0 data providers:

• Ingest Subsystem availability of 0.999

• 2000 hours mean time between failures (MTBF)

• Fifteen minutes mean time to restore (MTTR) from a failure to operational capability

A more detailed availability analysis may be found in the Availability Models/Predictions for the
ECS Project document (515-CD-002-002).

It should be noted that certain sites are not staffed 24 hours per day, and are subject to somewhat
different operational requirements during unstaffed periods. The Ingest Subsystem is designed to
operate with minimal operator involvement, and is planned to continue the function of ingesting
data during unstaffed periods. However, certain functions that inherently require initial operator
involvement, such as initiating ingest via hard media, are not supported during unstaffed periods.
Moreover, faults may require human involvement to reconfigure and reboot the ingest client hosts.
Therefore, the 15 minute MTTR requirement for support of the receipt of science data is not be
supported during unstaffed periods. In order to eliminate any potential system overload, Ingest
Subsystem capabilities are sized to satisfy full 24 hour L0 data ingest requirements during staffed
periods.

The instantiation of the Ingest Subsystem varies at each site, but is based on the same architecture
concepts and classes of hardware and software. The generic Ingest Subsystem architecture is
shown in Figure 3.1-2. The ingest client software required for a specific Level 0 interface at a
given site runs on a client host computer residing in the Ingest Subsystem. Multiple ingest clients
may run on a single client host, or may be distributed among multiple client hosts, depending on
the data load supported by each interface. At least one spare client host is provided at each site in
order to provide a warm backup failover capability in the event of a primary host failure. A hot
backup approach was initially considered, but was determined to be unnecessary to meet the
15-minute MTTR requirement. Furthermore, a hot backup capability requires the Level 0 data

3-11 305-CD-025-002

Figure 3.1-2. Ingest Subsystem Hardware Diagram

provider to transfer the same data to two processors (not currently supported by EDOS).
Commercially available workstations of the class required for the client hosts typically support
MTBFs in the 20,000 to 40,000 hour range. Calculations indicate that the use of this hardware in
conjunction with redundant working storage and data repository components will meet data ingest
RMA requirements.

Working storage media drive and robotics devices are sized to accommodate redundant devices or
components as necessary. A combination of paper analysis and system modeling efforts have been
used to determine the final configuration necessary to meet system performance and RMA
requirements. A summary of the Ingest Subsystem sizing analysis is presented in the DAAC-
specific Design Specifications.

3.2.2.2 Ingest Client Implementation

As shown in the context diagram in subsection 3.1.1, the Ingest Subsystem supports a wide variety
of external interfaces. The application-level protocol to set up for data transfer is potentially
different for each of the external interfaces. As a result, a separate ingest client software application
is required to facilitate data transfer for each interface. To minimize the software development
effort and make it easier to accommodate new external interfaces in the future, the external
interfaces were categorized based on common characteristics as follows:

Operat ions

stations

C lient

 hosts

INGE ST SUBSYSTEM

Networked Ingest

C lient

S upported

Local & Remote

Users & Systems

 LEGEND

Low Bandwidth Subnetwork (s)

High Bandwidth Subnetwork (s)

D isk / RAID Disk

OPS Workstations / X-Terms

P rocessing / Servers

Peripherals /Media Gen

Temporary Media

CD ROM

PROCESSING

SUBSYSTEM

Working

s torage
High Capac ity

Repository

DATA SE RVER

SUBSYSTEM

3-12 305-CD-025-002

• Automated Network Ingest by means of a Data Availability Notice (DAN) supplied to
ECS--ECS receives the DAN and schedules automated network data transfer from the
source. The DAN describes the location of the available data. ECS "gets" data from the
source within a specified time window. Note: External data providers are responsible for
developing application software to interact with ECS automated network ingest software.
The SDPF has existing design/software that may be used as a template.

• Polling Ingest with Delivery Record--ECS periodically checks an agreed-upon network
location for a Delivery Record file. The Delivery Record file contains information
identical to that in a DAN. The Delivery Record describes the location of the available
data. If a Delivery Record is located, ECS "gets" data from the source within a specified
time window. Note: the data location may be on a working storage device within ECS,
where an external data provider may have previously transferred the data.

• Polling Ingest without Delivery Record--ECS periodically checks an agreed-upon network
location for available data. All data in the location is assumed to make up a collection of
ingest data of one specific data type, with one file per data granule. If data is located, ECS
"gets" data from the source within a system-tunable time window.

• Manual data transfer mechanisms are in place for transfer of data from hard media, for
hardcopy scanning and digitizing, and for science user-controlled (interactive) network
data transfer.

— Hard Media Ingest is available for authorized institutions or science users providing
data on hard media and as a backup mechanism for facilities where automated network
data transfer is temporarily unavailable. The hard media must contain information
identical to the Delivery Records described above, in a standard file format, or the data
provider must separately provide Delivery Records to a specified ECS location in the
standard file format.

— Hardcopy scanning and digitizing is provided to allow ingest of existing hardcopy
documents. Operations personnel digitize/scan the hardcopy. Ingest GUI software is
provided to use operator input in building the equivalent of a DAN. Ingest processing
proceeds as for other data sources thereafter.

— Interactive Network Ingest is available for authorized science users to manually
identify data to be ingested. Science users may "put" the data into an accessible ECS
location or may request that ECS "get" the data from their workstation. Information
identical to that contained in the Delivery Record is entered by means of GUI input (or
derived by the GUI software).

Data transfer is accomplished by one of three means--file transfer protocol (ftp) "get", ftp "put", or
hard media data transfer. Ftp get involves ECS "getting" data from an external site. Ftp put
involves an external site "putting" data into ECS. Hard media data transfer involves data transfer
from one of several ingest peripheral types found at a DAAC. Kerberized ftp (kftp), providing
additional communications security services, is specified as the standard data ingest protocol.
Exceptions may be made in the case of interfaces to existing facilities, which may be granted
waivers from supporting kftp on a case-by-case basis.

3-13 305-CD-025-002

Table 3.1-2 describes each external interface in Table 3.1-1 in terms of the interface protocols used,
and the Interface Control Document (ICD) in which detailed interface design information may be
found.

Table 3.1-2. External Interface Protocols (1 of 2)

Interface
(facility)

Type of Primary Interface
Protocols

Type of Backup In-
terface Protocols

Comments

SDPF Automated Network Ingest/
ftp get

None Defined by SDPF ICD

TSDIS Automated Network Ingest/
ftp get

None Defined by ECS/TSDIS ICD

NOAA/NMC
(DAO)

Polling Ingest without Deliv-
ery Record/ftp get

None Defined by ECS/GSFC DAAC-
specific ICD

NOAA
(NESDIS)

Polling Ingest without Deliv-
ery Record/ftp get

None Defined by ECS/ADC(NOAA) ICD

EDOS Polling Ingest with Delivery
Record/ftp put

Hard media Defined by EDOS ICD

ASTER DPS TBD hard media None Defined by ECS/IP ICD

FDF Automated Network Ingest/
ftp get

None Defined by ECS/FDF ICD

Landsat7 LPS Automated Network Ingest/
ftp get

None Defined by Landsat-7 ICD

Landsat 7 IAS Interactive Network Ingest/
ftp get or put

None Defined by Landsat-7 ICD

Landsat 7 IGS Hard media None Defined by Landsat-7 ICD

SCF Interactive Network Ingest/
ftp get or put

8mm tape Defined by ECS/SCF ICD

Users Interactive Network Ingest/
ftp get or put

None Defined by TBD

Version 0 (GS-
FC)

Hard Media Ingest (8mm
tape) and/or Polling Ingest
with Delivery Record/ftp get
and/or Interactive Network
Ingest/ftp get or put

None Defined by ECS/GSFC DAAC-
specific ICD

Version 0
(LaRC)

Polling Ingest with Delivery
Record/ftp get plus Interac-
tive Network Ingest/ftp get
or put

None Defined by ECS/LaRC DAAC-
specific ICD

Version 0 (JPL) Hard Media Ingest (8mm
tape) and/or Polling Ingest
with Delivery Record/ftp get
and/or Interactive Network
Ingest/ftp get or put

None Defined by the ECS/JPL DAAC-
specific ICD

Version 0
(NSIDC)

Hard Media Ingest (8mm
tape) and/or Polling Ingest
with Delivery Record/ftp get
and/or Interactive Network
Ingest/ftp get or put

None Defined by the ECS/NSIDC
DAAC-specific ICD

3-14 305-CD-025-002

3.2.2.3 Version 0 Migration Impact on the Ingest Subsystem

Requirements that dictate the volume and other characteristics of Version 0 data to be migrated in
the Release A and Release B timeframe from the Version 0 DAACs into the ECS are a critical
design driver. The Version 0 data widely varies in format, structure, volume, and transfer
mechanism. Previous design team experience indicates that migration of existing data requires a
major engineering effort, including data analysis; data conversion and reformatting tool
development; extensive integration and test (to ensure data integrity); system analysis of required
hardware components (e.g., networks, storage, etc.); and maintenance and operations (to perform
the actual migration and data validation).

The design team has proposed a process to ensure the successful migration of Version 0 data into
the ECS. The process is documented in a separate Data Migration Plan white paper (160-TP-002-
001, Version 1). That white paper describes the process by which Version 0 data is transformed
into a standard form that is recognizable by the Ingest Subsystem. The white paper assumes that
the Ingest Subsystem is structured to facilitate ingest of data in a standard form.

As described in the following sections, the Ingest Subsystem is structured so that data is ingested
into ECS by a standard mechanism once the data is preprocessed (e.g., data conversions and
reformatting, metadata extraction, and metadata quality checking). Therefore, the primary task of
Version 0 migration--data preprocessing--may be performed externally from the Ingest Subsystem.
In addition, the Ingest Subsystem design provides standard ingest interfaces (as described in

Interface
(facility)

Type of Primary Interface
Protocols

Type of Backup In-
terface Protocols

Comments

Version 0 (ASF) Hard Media Ingest (8mm
tape) and/or Polling Ingest
with Delivery Record/ftp get
and/or Interactive Network
Ingest/ftp get or put

None Defined by the ECS/ASF DAAC-
specific ICD

Version 0 (EDC) Hard Media Ingest (8mm
tape) and/or Polling Ingest
with Delivery Record/ftp get
and/or Interactive Network
Ingest/ftp get or pu

None Defined by the ECS/EDC DAAC-
specific ICD

Version 0 (CIES-
IN)

All available for CIESIN
implementation

None Defined by the ECS/CIESIN
DAAC-specific ICD

Version 0
(ORNL)

All available for ORNL
implementation

None Defined by the ECS/ORNL
DAAC-specific ICD

SeaWinds Polling with Delivery
Record/ftp get

None Defined by the ECS/SeaWinds
ICD

ALT/
RADAR

Polling with Delivery
Record/ftp get

None Defined by the ECS/ALT/RADAR
ICD

SAGE III Polling with Delivery
Record/ftp get

None Defined by the ECS/SAGE III ICD

ACRIM Polling with Delivery
Record/ftp get

None Defined by the ECS/ACRIM ICD

Table 3.1-2. External Interface Protocols (2 of 2)

3-15 305-CD-025-002

previous subsections). Therefore, the selection of the data transfer mechanism (e.g., 8mm tape,
network transfer) for a specific Version 0 data product may require additional copies of Ingest
Subsystem hardware, but does not require new (i.e., undesigned) Ingest Subsystem hardware or
software. The potential use of a data transfer media that is not already supported in Release A
would need to be evaluated on a case-by-case basis.

Accordingly, the Version 0 migration effort may be planned as a separate activity from the Ingest
Subsystem development. A proposal for development of a "Version 0 Migration Facility" was
reported on at the Release B Interim Design Review (IDR).

3.2.2.4 Impact of Performance Requirements

TRMM Expedited Data Ingest

The Ingest CSCI assigns different priorities to each external site (e.g., the SDPF). The capability
to assign a different priority to each category of data within the site (e.g., production Level 0 data/
expedited (equivalent to quicklook) data) is available as an extension to the design, but is not
currently implemented. Our analysis indicates that the rate of ingest of SDPF data (delivery of
Level 0 data once per day; delivery of expedited data three times per day) and the relatively small
data volumes (much less than one gigabyte) may be handled by the existing priority scheme.

TRMM I/O Throughput

Based upon Level 0 data volumes and loading estimated in Appendix A of the TRMM IRD ECS
modeled the nominal data I/O throughput. Note: the non-Level 0 data flow into Data Server
hardware, and therefore do not impact the Ingest HWCI. In addition, the following TRMM IRD
requirement for TSDIS reprocessing imply the peak throughput:

TRMM4090 -- ...ECS shall also daily ingest an average of 2 days worth of reprocessed data from
TSDIS. (GSFC interface)

Assuming that Level 0 data is retrieved for reprocessing at this same rate, the working storage
component of the Ingest HWCI is sized for 2.5 days' data volume (one day's worth of Level 0 data
ingest, one days' worth of Level 0 data retrieved from storage plus 25% contingency). The
hardware sizing information is documented in section 5 of this document and in the DAAC-
specific volumes for LaRC and MSFC.

EDOS Expedited Data Ingest

As with the SDPF expedited data, analysis indicates that the rate of ingest of EDOS expedited data
(several times per day) and the relatively small data volumes (much less than one gigabyte) may
be handled by the existing Ingest priority scheme in concert with ongoing ingest for EDOS and
other data products.

EDOS I/O Throughput

Based upon Level 0 data volumes and loading specified in the February 1996 Technical Baseline
ECS modeled the nominal data I/O throughput. Note: the Level 0 data flow into the Ingest HWCI.

The working storage component of the Ingest HWCI is sized for 2.5 days' data volume (one day's
worth of Level 0 data ingest, one days' worth of Level 0 data retrieved from storage plus 25%
contingency). The hardware sizing information is documented in section 5 of this document and
in the DAAC-specific volumes for LaRC and GSFC.

3-16 305-CD-025-002

Landsat 7 (LPS) I/O Throughput

Based upon Level 0R data volumes and loading specified in the February 1996 Technical Baseline
ECS modeled the nominal data I/O throughput. Note: The Level 0R data flow into the Ingest
HWCI working storage component and are transferred to Data Server hardware for permanent
storage.

The Ingest HWCI is sized for 1.25 days' data volume (one day input from LPS, 25% contingency).
The Data Server HWCIs are sized for an additional two days' data volume for retrieval of L0R data.
The ICLHW hardware sizing information is documented in section 5 of this document and in the
DAAC-specific volume for EDC. The Data Server hardware information is documented in the
Data Server volume of this document.

Other L0 I/O Throughput

Other Level 0 interfaces (ADEOS II/SeaWinds, FOO/COLOR, SAGE III, ALT RADAR, and
ACRIMSAT) are comparable in data volume and loading with the TRMM Level 0 interface. They
are proposed to be implemented similarly. Table 5.1-1 provides details.

3.2.3 Ingest Subsystem Design Paradigms

The Ingest subsystem is characterized by the design paradigms used to facilitate the subsystem's
construction. The Ingest subsystem uses four basic design paradigms--object factory creation of
objects, multi-threading/prioritization of processes, distributed objects, and a client/server
architecture. The following subsections discuss the Ingest subsystem's use of those concepts.

3.2.3.1 Object Factory

The object factory approach is used in three areas of the Ingest subsystem. First, the Ingest Server
object factory creates an Ingest Session object for each connection requested by an external data
provider. Second, an Ingest Request Manager object factory creates an Ingest Request object for
each request submitted by the external data provider. Third, an Ingest Granule Server object
factory creates an Ingest Granule object for each granule specified in a request. Each Ingest
Session, Ingest Request, and Ingest Granule object performs its actions asynchronously from other
objects. The Ingest Session, Ingest Request, and Ingest Granule objects together perform the
fundamental activities required to ingest data into ECS.

See section 4.5 of this volume for details on the object factory implementation.

3.2.3.2 Multi-threading/Prioritization

DCE pthreads are used to implement multithreading for the Ingest Request and Ingest Granule
objects. Prototypes have verified that several thousand pthreads may be generated per Unix
process.

The Ingest subsystem implements request prioritization based on DCE pthread priority
mechanisms. The pthread round-robin prioritization scheme was selected. The round-robin
scheme provides time-sliced processor access for pthreads of equal priority. The highest-priority
requests are processed to completion or until blocked, at which time lower-priority requests are
processed.

3-17 305-CD-025-002

The default priority for a request is obtained from an internal table, based on the external data
provider. Operations personnel have the capability to change the priority of an ongoing request
once it is received by the Ingest software.

See section 4.5 of this volume for details on the pthread and prioritization implementation. See
Section 5.4.8, Volume 0, of this document for a general discussion of the DCE pthread concept.

3.2.3.3 Distributed Objects

The Ingest Server, Request Manager, and Granule Server object factories are fully distributed. A
given ECS site contains a single instance of the Ingest Server and Request Manager objects. A
separate Granule Server is implemented on each processor on which data preprocessing occurs.
Operator GUI services access the object factory objects using the DCE Name Service services of
OODCE without regard to the processor on which GUI and object factory are installed.

3.2.3.4 Client/Server Architecture

The Ingest subsystem contains a number of sequential client/server relationships. First, the
external data provider (or the CSS Gateway that acts as interpreter for an external data provider) is
the client to the Ingest Session object that services the data provider. Second, the Ingest Session
object acts as a client to submit data provider requests to an Ingest Request server object. Third,
each Request object acts as a client to submit data granule sub-requests to an Ingest Granule server
object, which ingests the granule. Finally, the Ingest Granule object acts as a client to invoke Data
Server subsystem servers that perform working storage allocation, data transfer, and data insertion.

3.2.4 Ingest Subsystem Use of Key Design Mechanisms

ECS provides a number of key design mechanisms to facilitate implementation of the design
paradigms described above. The key design mechanisms are documented in the CSS and MSS
volumes of this document. The key design mechanisms represent software that is of general use
across ECS subsystems as a common infrastructure. Use of the key design mechanisms ensures
that standard implementations of common infrastructure components are used throughout ECS.
The following subsections document the use of key design mechanisms by the Ingest subsystem.

3.2.4.1 Server Request Framework (SRF)

The ECS Server Request Framework (SRF) provides a standard implementation of the object
factory and pthread paradigms described above. Ingest subsystem object classes are derived from
base SRF classes to implement the Ingest Granule Server/Ingest Granule object classes. The SRF
also guarantees asynchronous message delivery between objects implemented by means of the
SRF.

The Server Request Framework overlays the ECS Distributed Object Framework (DOF). The
Server Request Framework is discussed in Section 5.4.8 and 6.1.5 of Volume 0 of this document.
The Distributed Object Framework is discussed in Sections 5.4.8 and 6.1.2 of Volume 0.

3.2.4.2 End-to-end Request Tracking

The Ingest Request object described above is a specialization of a general ECS request object--
EcRequest. The EcRequest object generates a unique request ID that is used a) to track ingest
requests from submission through archiving of data granules and b) provide a linkage to events

3-18 305-CD-025-002

logged in the MSS event log. The request ID is displayed on Ingest subsystem status monitoring
screens and stored in the Ingest History Log, which collects summary data on the ingest requests.
The request ID is also attached to each event logged using the MSS event logging service.
Together, the request ID allows operations personnel to track and analyze ingest requests at all
stages of ingest processing.

3.2.4.3 Universal References/Advertising

Universal References (URs) are used to uniquely identify critical ECS entities. The Ingest
subsystem uses Data Server subsystem service URs and data granule URs.

The Ingest subsystem uses Data Server service URs to locate available Data Server insert and
resource management services. The URs are obtained by use of an Ingest subsystem tool invoked
at initial system startup and re-invoked thereafter whenever the set of available URs changes. The
tool obtains all available URs from the Advertising service, based on the full set of data types that
may be inserted into the Data Server subsystem. The URs are stored in a local Sybase table. Note:
if URs change, but the tool is not used, subsequent Ingest requests may fail.

The Ingest subsystem uses Data Server data granule URs to identify archived data after insertion
into the Data Server subsystem. The URs may be returned to data providers by means of email.
Data providers may use the URs to access data within the Data Server subsystem.

Universal References are discussed in Section 6.1.3 of Volume 0 of this document.

3.2.4.4 Process Framework

Unix processes created to invoke the Ingest subsystem components are managed by the MSS
Process Framework. All processes that make use of process management and event logging
services invoke the MSS Process Framework.

The Ingest subsystem overloads the startup and shutdown services of the Process Framework. The
Ingest startup service allows the Ingest subsystem components to start up in an appropriate order.
The Ingest Granule Server is created first, the Ingest Request Manager process is created second,
and the Ingest Server is created last. The Ingest shutdown service allows the Ingest subsystem
components to shut down gracefully on operations staff command. For the Ingest subsystem, the
order of process shutdown is immaterial. Ingest subsystem recovery mechanisms, described
below, allow subsequent restart without concern for the relative state of processes during
shutdown.

The Process Framework is discussed in Sections 5.4.8 and 6.1.4 of Volume 0 of this document.

3.2.4.5 Event Detection/Logging

The Ingest subsystem makes full use of CSS event logging and browsing services. The classes of
events reported and the use of CSS services are described in subsection 4.6.1.2 of this document.

Event, exception, error and fault handling (and their definitions) are described in Sections 5.4.8 and
6.4.5 of Volume 0 of this document.

3-19 305-CD-025-002

3.2.4.6 Mode Management

The Ingest subsystem uses CSS Mode Management services to allow instantiation of the Ingest
subsystem in operational, testing, and training modes. The CSS Process Framework passes the
mode parameter to the Ingest subsystem at system startup. The Ingest subsystem subsequently
uses the mode parameter as a suffix to data base names, DCE object names, and system directory
names. Separate Sybase data bases and Unix system directories are implemented for each
available mode. The mode parameter is also stored in selected Sybase tables to distinguish the
mode in which the table entry was generated.

Operational, testing, and training mode instantiations of the Ingest subsystem software may
individually run on any hardware on which the Ingest subsystem is installed. At ECS sites where
an Ingest subsystem Hardware Configuration Item (HWCI) is implemented, primary and backup
processors are available. The operational software typically runs on the primary, while testing and
training instantiations run on the backup. Note: see the description of Ingest subsystem hardware/
software failover in a subsequent subsection.

Mode management is discussed in Section 5.4.9 of Volume 0 of this document.

3.2.4.7 Performance and Accountability Reporting

The Ingest subsystem provides performance and accountability information to MSS by means of
MSS performance and accountability reporting services. MSS provides agents to collect the
provided performance and accountability information. MSS also provides SNMP agents to
monitor configuration information related to Ingest subsystem hardware.

Table 3.2-2 lists the performance and accountability parameters collected and their frequency of
collection. Performance and accountability reporting are discussed in Sections 6.4.6.3.2 and
6.4.6.3.3 of Volume 0 of this document.

Table 3.2-2. Ingest Performance and Accountability Parameters (1 of 2)

Parameter/Event Description Recommended Sample Frequency/
Event Frequency

Request Event Per request:
- Order ID
- External Data Provider
- Mission
- Total processing time
- Total data volume
- Total number of files
- Total number of granules
- Ingest type (automated, interactive, poll-
ing files, polling delivery record, media)
- Total Time to Transfer
- Total Time to Preprocess
- Total time to Archive
- Warm Start Flag
- Completion Status (successful or with
errors)

Once per Ingest request

3-20 305-CD-025-002

Parameter/Event Description Recommended Sample Frequency/
Event Frequency

Request Granule
Event

Per granule:
- Order ID
- Data volume
- Number of files
- Time to transfer
- Time to preprocess
- Time to archive
- Warm start Flag
- Final Status (used to provide fault met-
rics)

Once per request granule

External Data Pro-
vider Request
Threshold

Maximum number of request allowed to
be processed by a single data provided.
A separate maximum exists for each data
provider

Once per minute

External Data Pro-
vider Volume Maxi-
mum

Maximum volume of data allowed across
all ongoing ingest requests submitted by
an external data provider. A separate
maximum volume exists for each external
data provider

Once per minute

Data Volume Buff-
ered

Total volume of data being throttled, by
Ingest Request Processing, due to exces-
sive system/external data provider vol-
ume loads

Once per minute

Data Requests
Buffered

Total number of requests being throttled,
by Ingest Request Processing, due to ex-
cessive system/external data provider re-
quest load

Once per minute

Daily Count of Data
Quality Faults

Running count of data quality faults. Ini-
tialized to zero at Ingest process initializa-
tion. Reset to zero once a day by Ingest
software . Data quality errors include
metadata missing or invalid values, miss-
ing required files or DAN file validation
failures. Note: detail error status values
are reported in Request granule event de-
scribed above.

Once every fifteen minutes

Daily Count of In-
gest Errors

Running count of Ingest errors. Initialized
to zero at Ingest process initialization.
Reset to zero once a day by Ingest soft-
ware. Ingest errors include all failures,
excluding data quality faults, which
cause a granule in a request to fail to be
archived (e.g., data base access failures,
external communication errors, system
failures, request rejections for security
failures)

Once every five minutes

Daily Count of Re-
quest Processed
(successfully or un-
successfully)

Running count of all Ingest requests. Ini-
tialized to zero at Ingest process initializa-
tion. Reset to zero once a day by Ingest
software.

Once every fifteen minutes

Table 3.2-2. Ingest Performance and Accountability Parameters (2 of 2)

3-21 305-CD-025-002

3.2.4.8 User Profile

The Ingest subsystem uses the MSS User Profile to determine the authorization of a specified user
to ingest data into ECS. A separate entry is included in the User Profile for each authorized science
user as well as for each institutional data provider (e.g., TSDIS and the Landsat-7 Processing
System).

The User Profile also provides default email addresses for each science user/institutional data
provider. The email address is used if a data provider has requested notification of ingest status or
provision of URs by means of email.

The User Profile is discussed in Section 5.4.9 of Volume 0 of this document.

3.2.5 Ingest Subsystem Key Design Features

The Ingest subsystem provides a number of additional features that optimize the reliability,
availability, maintainability, and security of the subsystem software and hardware. Together, the
features provide the robustness and flexibility required to support the Ingest subsystem throughout
its project lifetime.

3.2.5.1 Ingest Subsystem Failover

As described above, certain ECS sites have highly-reliable Ingest subsystem hardware, containing
primary and backup processors. The processors have cross-strapped connections to working
storage devices and Sybase data base disks. Working storage devices are RAID-5, while disks
used for Sybase transaction log storage are RAID-1 (mirrored). The Ingest subsystem provides a
switchover capability that transfers execution of the operational software from the primary to the
backup processor in the event of a primary failure. In that eventuality, testing and training
instantiations on the backup processor are shut down by the Process Framework.

An MSS agent is implemented to detect a system failure of the primary system hardware. In
addition, the an MSS agent detects critical software failures.

Upon operations staff command the MSS Process Framework restarts the backup processor with
an identical Internet address to that of the primary processor. Upon Process Framework software
startup, the Ingest subsystem uses its recovery capabilities to restart Ingest subsystem software
from their checkpointed states. Thereafter, the backup processor instantiation of the Ingest
subsystem is identical to the previous instantiation on the primary processor.

3.2.5.2 Tunable Parameters

The Ingest subsystem provides the capability to tune certain parameters. Parameters are stored in
the Ingest Configuration File or passed as a calling parameter to a program at system startup or are
stored in an Ingest data base table. Table 3.2-3 lists the tunable parameters and their source.

Parameters stored in the Configuration File are loaded into an MSS Management Information
Block (MIB). Parameters in the MIB can be changed during run time by means of an MSS GUI.

Calling parameters are only changeable at system startup by means of operator input to the Process
Framework.

Parameters stored in an Ingest data base table are changed via the Ingest Operator Tool GUI
screens.

3-22 305-CD-025-002

3.2.5.3 Recovery

The Ingest subsystem is designed to allow automatic recovery from system failures in the Ingest
subsystem hardware or software CIs. The Sybase data base is the primary mechanism facilitating
recovery. The Ingest Server, Ingest Session, Request Manager, Ingest Request, Granule Server,
and Ingest Granule objects each checkpoint state information in Sybase. In the event of a warm
system restart after a processor or software component failure, each checkpointed object
reinitializes itself based on the checkpointed information. Once an ingest request is completed,
summary information is transferred to the Ingest History Log (also maintained in Sybase) using
Sybase triggers, and the original checkpoint information is deleted.

Request level checkpointing information is entered when an ingest request is received. Granule
level checkpointing information is entered as each granule referenced in a request is transferred,
preprocessed, and inserted into the Data Server subsystem. File level checkpointing information
is entered after each file in a granule is transferred. Completed files, granules, or requests are not
restarted during system restart.

Table 3.2-3. Ingest Tunable Parameters
Parameter /

Parameter Category
Description Change Control Source

Polling Ingest Timer The time period which indicates how
often the Polling Ingest Session
should check for the existence of in-
gest files for ingest processing. A
separate polling timer exists for each
external data provided using the Poll-
ing Ingest Mechanism

Ingest GUI Ingest Data Base
Table

External Data Provider
Priority

Priority associated with ingest re-
quests from the external data provid-
er. A separate priority exists for each
external data provider

Ingest GUI Ingest Data Base
Table

External Data Provider
Request Maximum

Maximum number of requests allowed
to be processed at one time by the ex-
ternal data provider. A separate max-
imum exists for each external data
provider.

HP Open View Ingest Configuration
File

External Data Provider
Volume Maximum

Maximum volume of data allowed
across all ongoing ingest requests
submitted by an external data provid-
er. A separate maximum volume ex-
ists for each external data provider.

HP Open View Ingest Configuration
File

Communication Retry
Count

Number of retries to perform when a
communication failure is encountered
with the external data provider.

Ingest GUI Ingest Data Base
Table

MonitorTimeFor Com-
pletedRequest

Time (in minutes) a completed re-
quest will remain on the operators
monitor screen

Ingest GUI Ingest Data Base
Table

WarmStartTimeLimit Time (in days) failed requests can be
warm started from checkpointed state
(checkpointed data exceeding this
time limit will be automatically deleted
from the Ingest checkpoint tables)

Ingest GUI Ingest Data Base
Table

3-23 305-CD-025-002

Both warm restart and cold restart capabilities are supported by the MSS Process Framework. A
parameter is entered at system startup to indicate which restart capability to invoke. If cold restart
is selected, then checkpointed information is deleted, and ingest processing continues with new
ingest requests. If warm restart is selected, then Ingest subsystem components are reinitialized as
described above.

Specific details on error detection and reporting and on fault tolerance and error recovery are
provided in sections 4.6.1.2 and 4.6.1.3, respectively, of this document. Table C-1 in Appendix C
shows the major fault categories and their recoverability options. Fault categories are marked as
"warm restart recoverable", "immediate retry recoverable", and "unrecoverable".

For warm restart recoverable faults, the Ingest subsystem attempts to restart ingest processing on
each checkpointed granule. If the restart fails, the error is reported and the recovery attempt is
aborted for the given granule.

Retries are performed when the Ingest software sends a Data Delivery Notice (DDN) to an external
data provider. The number of retries and the wait time between retries is stored in the
Configuration File.

Unrecoverable faults include situations where a) the maximum retry limit has been exceeded; b)
system volume and request thresholds have been exceeded; and c) a COTS hardware or software
component has failed and cannot be restarted (e.g., after a hard disk error or Sybase failure). Where
backup information is retained (e.g., Sybase transaction logs), data may be manually reloaded and
recovery attempted after system restart.

Fault tolerance and recovery are discussed in Section 6.4.5.2.4 of Volume 0 of this document.

3.2.5.4 Security

The Ingest subsystem makes use of standard ECS security services to prevent unauthorized ingest
of data. The Ingest subsystem is protected in three ways--by means of user authorizations, by use
of kftp, and by use of CSS wrappers to Kerberos security services.

Institutional data providers, including authorized science users, may ingest data into ECS.
Authorization information for data providers is stored in the MSS User Profile. The Ingest
subsystem verifies the authorization of a data provider when a) preparing to ingest data from
supplied media and b) receiving ingest information from the Interactive Ingest GUI. In addition,
the CSS Ingest Gateway authenticates access by automated network ingest data providers (e.g.,
TSDIS, SDPF, Landsat-7 LPS).

Mode Parameter Determines in which mode (operation-
al, test, training) to initiate an Ingest
process. Supplied by operations per-
sonnel to the MSS Process Frame-
work at system startup

Process
Framework

Calling Parameter

Startup Mode Determines if Ingest software is warm
or cold started

Process
Framework

Calling
Parameter

Table 3.2-3. Ingest Tunable Parameters

3-24 305-CD-025-002

Per NASA security guidelines Kerborized ftp (kftp) is the standard file transfer mechanism for
external data providers seeking to transfer data into ECS. Kftp accesses Kerberos security services
to request file transfer resources using an encrypted key mechanism. Note: several external data
providers have sought and received a waiver on the use of kftp and are using ftp instead. The
username/password information required for ftp is not encrypted and is therefore less secure than
for kftp use.

To enhance security each data provider authorized to transfer data into ECS is assigned a directory
location. The directory location is stored in the User Profile. The directory is protected by means
of Unix file permissions.

In addition, the DCE services which underly interprocess communications within ECS use CSS
security services (which use Kerberos security services) to authenticate application use of ECS
services. Unauthorized external applications attempting to access ECS services are rejected.

Finally, the EDOS interface to the Ingest subsystem is implemented behind a firewall that prevents
access of EDOS systems by users logged in through the Ingest subsystem processors.

The ECS security architecture is discussed in Section 6.2 of Volume 0 of this document.

3.2.5.5 Parallel Rel A/B Operations

Ingest subsystem mechanisms for transitioning from Release A to Release B are described in a
separate technical paper, 420-TP-010-001.

3.2.5.6 Portability

Ingest subsystem components are implemented to facilitate portability to multiple Unix platforms.
Components are implemented using Posix 1003.1a, which provides standard implementations of
Unix system services. Currently, software is developed in a Sun Solaris environment and
integrated on the target SGI Irix environment.

3.2.5.7 Data Backup Policy

Since all Ingest subsystem system-level data is stored in the Sybase data base, backup may be
accomplished by means of standard Sybase backup utilities and load tools. This includes all
information stored in the Ingest History Log, which summarizes Ingest activity.

3.2.5.8 Application Programming Interfaces

Application Program Interfaces (APIs) are provided to selected Ingest subsystem services--create
session, create request, cancel request, hold request, and resume request. In addition, all Ingest
subsystem system-level data is stored in the Sybase data base. DAACs may develop DAAC-
unique interfaces using the APIs and/or Sybase interfaces to a) implement new polling interface
mechanisms; b) implement new GUI interfaces, including new reports; or c) other DAAC-specific
applications.

3.2.5.9 Summary Statistics Reports

The summary statistics reports available from the Ingest subsystem are discussed in section 4.6.3
of this document.

4-1 305-CD-025-002

4. INGST - Ingest CSCI

4.1 CSCI Overview
The Ingest CSCI is responsible for the receipt of data arriving at a site and the physical placement
of data into the site's storage hierarchy. A provider site within EOSDIS will normally need to
ingest a wide variety of data types to support the services it wishes to offer. These data may be
delivered through different interfaces (network file transfer, hard media, hard copy, etc.), with
varying management approaches to these interfaces. This interface heterogeneity and the need to
support extendability and new data/interfaces as algorithms and provider functionality changes,
lead to a design in which the ingest functionality is isolated from other subsystems within the
segment design.

Although each instance of the Ingest CSCI has to deal with the characteristics of the specific
external interface it is managing, the general functionality is similar in each case.

• Ingest processing is either event-driven or timer-driven. For automated network ingest
(e.g., SDPF and Landsat-7 LPS), data centers send Data Availability Notices to the DAACs
to indicate the availability of data. For hard media ingest, the "data availability notice" is
entered by DAAC operations staff at a GUI interface. Similarly, for interactive network
ingest under science user control, the "data availability notice" is entered by the science
user at a GUI interface. For timer-driven ingest (e.g., NESDIS and EDOS), on the other
hand, data centers transfer data to an agreed-upon network location and ECS ingest clients
periodically check ("poll") for the existence of new data.

• Depending on the interface, data may be transferred by either a data "get" or a data "put".
A data get is performed by the Ingest CSCI under Ingest CSCI control. A data put is
performed by another data center under that data center's control.

• The Ingest CSCI performs transmission checks relevant to the transfer mechanism (e.g.
data quality, data redundancy, missing files, etc.) and notifies the data source of success or
failure. Failure results in a request to resend or in notification of the operations staff. The
DAAC operations staff monitors the status of active ingest processing.

• The Ingest CSCI extracts sufficient metadata to allow the data to be retrieved at a later time
from the Data Server. The metadata information is contained within the data file, within a
separate metadata file in standard format associated with the data, or within the information
provided to request ingest. The form in which metadata is provided is determined by the
Interface Control Document (ICD) defined for the specific interface. Some portion of the
metadata is checked for quality (e.g., all required metadata parameters available,
parameters within a range of values, etc.). Additional metadata, such as the time of ingest,
is determined by the Ingest CSCI.

• When the collection of data is complete (i.e., all referenced data are available), the Ingest
CSCI requests insertion of the data into an appropriate Data Server.

• The Ingest CSCI records the successful or unsuccessful transfer of data into the site in an
ingest history log. The ingest history log stores summary information for each ingest

4-2 305-CD-025-002

request accepted by ECS. Detailed error and status information is stored in an event log.
Entries in the event log and in ingest history log are related by means of a date/time stamp
and by means of the ingest request identifier. The DAAC operations staff and System
Management Center (SMC) staff may interrogate the ingest history log and the event log.
In addition, the Ingest CSCI returns the completion status for the ingest data transfer to the
data ingest requester.

4.2 CSCI Context
The context diagram for the Ingest CSCI is identical to that of the Ingest Subsystem, since the
Ingest CSCI is the only CSCI for the subsystem (see Figure 3.1-1). Table 4.2-1 shows the CSCI
service interfaces provided to entities external to the CSCI.

4.3 Ingest CSCI Object Model
Figures 4.3-1 through 4.3-5 show the object classes that model the Ingest Subsystem. Subsequent
paragraphs describe each of the object classes in terms of their parent class, purpose and
description, and their critical attributes, operations, and associations. With regard to commercial
off-the-shelf software (COTS), the Ingest CSCI uses:

• Rogue wave class library services pervasively throughout the design

• Sybase for relational data base services; and

• A Netscape Commerce http WEB server

Table 4.2-1. Ingest CSCI Service Interfaces

Interface Input Data Output Data Description

Ingest Server.
Create Session

External
Data Provider

Ingest_Status Sets up an ingest request session connection

Ingest Session.
Receive Message

Data
Availability
Notice
Data Delivery
Ack

Data Availability Ack
Data Delivery Notice

Provides the application-level protocol for
automated network data transfer

Media Ingest
Session. Receive
Message

Hard Media
Ingest
Request

Ingest_Status Provides authorized operations staff the means
to enter, by means of GUI input, information
required to ingest hard media

Network Ingest
Session. Receive
Message

Network
Ingest
Request

Ingest_Status Provides authorized science users the means
to enter, by means of GUI input, information
required to ingest data by network data transfer

Status Monitor.
Receive Request

User_Identifie
r

Ingest Request (list) Provides the status of a) all or selected ongoing
ingest requests (authorized operations staff) or
b) ongoing requests for a given user (specific
user)

Log Monitor.
 Receive Message

Ingest Log
Request

Ingest Log Provides the status of all or selected completed
ingest requests to authorized operations staff

4-3 305-CD-025-002

In
R

eq
ue

st

In
D

A
N

In
R

eq
ue

st
P

ro
ce

ss
H

ea
de

r

In
R

eq
ue

st
S

um
m

ar
yD

at
a

In
R

eq
ue

st
P

ro
ce

ss
D

at
a

In
R

eq
ue

st
S

um
m

ar
yD

at
a

In
R

eq
ue

st
M

an
ag

er

In
P

ol
lin

gT
hr

es
ho

ld

In
Lo

ng
D

D
N

In
S

ho
rt

D
D

N

In
G

ra
nu

le
S

er
ve

r_
C

B

In
G

ra
nu

le
A

sy
nc

_C
B

In
G

ra
nu

le
S

er
ve

r_
S

B

In
G

ra
nu

le
A

sy
nc

_S
B

m
yD

A
N

S
eq

N
o

m
yD

at
aP

ro
vi

de
r

m
yD

at
aT

yp
eC

ou
nt

m
yD

at
aT

yp
eL

is
t

C
he

ck
(c

ha
r

*D
A

A
m

sg
P

tr
)

F
ill

D
A

N
(in

t I
ng

es
tT

yp
e,

 c
ha

r
*P

ar
se

dK
ey

w
or

ds
[])

G
en

er
at

eD
A

N
(c

ha
r

*D
ir,

 c
ha

r
:*

D
at

aT
yp

e,
 in

t D
A

N
S

eq
N

o,
 c

ha
r

*D
A

N
F

ile
)

P
ar

se
dP

V
L(

ch
ar

 *
P

V
LB

uf
fe

r,
 in

t P
V

LL
en

)

~
In

R
eq

ue
st

In
fo

(v
oi

d)

G
et

P
ol

lin
gT

hr
es

ho
ld

s(
ch

ar
*

E
xt

er
na

lD
at

aP
ro

vi
de

rs
, i

nt
 P

ol
lin

gT
im

er
s,

 in
t

ro
w

co
un

t)

In
E

xt
er

na
lD

at
aP

ro
vi

de
rT

hr
es

ho
ld

C
re

at
eD

A
N

G
ra

nu
le

fil
es

(R
W

S
tr

in
g

&
D

A
N

F
ile

)

E
cP

F
M

an
ag

ed
S

er
ve

r

In
R

eq
ue

st
M

an
ag

er
_C

In
R

eq
ue

st
M

an
ag

er
_S

In
P

ol
lin

gI
ng

es
tS

es
si

on

In
S

es
si

on

In
In

te
ra

ct
iv

eI
ng

es
tB

In
R

eq
ue

st
C

on
tr

ol
le

r

In
G

ra
nu

le
M

es
sa

ge
B

In
G

ra
nu

le
S

er
ve

r_
C

B
(E

cT
vo

id
)

~
In

G
ra

nu
le

S
er

ve
r_

C
B

(E
cT

V
oi

d)

P
ro

ce
ss

G
ra

nu
le

B
(R

W
S

tr
in

g
&

D
A

N
G

ra
nu

le
fil

eN
am

e,
 E

cT
B

oo
le

an
 R

es
um

eF
la

g,
 E

cT
in

t

R
eq

ue
st

ID
, E

cT
in

t G
ra

nu
le

ID
)

m
yM

es
sa

ge
S

tr
in

gB

~
In

G
ra

nu
le

M
es

sa
ge

B
(E

cT
V

oi
d)

In
G

ra
nu

le
M

es
sa

ge
B

(R
W

S
tr

in
g

G
ra

nu
le

F
ile

N
am

e,
 E

cR
eq

ue
st

 O
rd

er
ID

, E
cT

B
oo

le
an

R
es

um
eF

la
g,

 E
cT

In
t R

eq
ue

st
ID

, E
ct

In
t G

ra
nu

le
ID

)

C
an

ce
lB

(E
cT

vo
id

)

C
om

pl
et

eB
(E

cT
vo

id
)

In
G

ra
nu

le
A

sy
nc

_C
B

(I
nG

ra
nu

le
A

sy
nc

R
eq

ue
st

_S
 &

ct
or

M
S

G
)

S
us

pe
nd

B
(E

cT
V

oi
d)

~
In

G
ra

nu
le

A
sy

nc
_C

(E
cT

vo
id

)

m
yE

xt
er

na
lD

at
aP

ro
vi

de
r

m
yD

at
aT

yp
eI

dL
is

t

m
yS

ta
te

C
ha

ng
e

m
yE

xp
ira

tio
nD

at
eT

im
e

m
yI

ng
es

tT
yp

e

m
yR

eq
ue

st
Id

m
yR

eq
ue

st
P

rio
rit

y

m
yR

eq
ue

st
S

ta
te

m
yS

es
si

on
Id

m
yS

eq
ue

nc
eI

d

m
yT

ot
al

F
ile

C
ou

nt

m
yA

gg
re

ga
te

Le
ng

th

m
yP

ro
ce

ss
in

gS
ta

rt
D

at
eT

im
e

m
yP

ro
ce

ss
in

gE
nd

D
at

eT
im

e

C
an

ce
l(v

oi
d)

G
et

R
eq

ue
st

Id
(v

oi
d)

G
et

S
es

si
on

Id
(v

oi
d)

C
ha

ng
eS

ta
te

(S
tr

in
g

*N
ew

S
ta

te
)

P
ro

ce
ss

R
eq

ue
st

B
(E

ct
V

oi
d)

C
he

ck
V

ol
um

eT
hr

es
ho

ld
B

(E
ct

In
t G

ra
nu

le
ID

, R
W

S
tr

in
g

R
es

ul
tin

gA
ct

io
n)

C
he

ck
R

eq
ue

st
S

ta
te

B
(E

cT
In

t *
G

ra
nu

le
ID

, E
cT

In
t R

es
ul

tin
gA

ct
io

n)

R
ec

ov
er

B
(E

cT
In

t G
ra

nu
le

ID
, R

W
S

tr
in

g
R

es
ul

tin
gA

ct
io

n)

R
es

um
eB

(E
cT

In
t G

ra
nu

le
ID

, E
cT

In
t R

es
ul

tin
gA

ct
io

n)

S
us

pe
nd

B
(R

W
S

tr
in

g
R

es
ul

tin
gA

ct
io

n)

C
an

ce
lB

(R
W

S
tr

in
g

R
es

ul
tin

gA
ct

io
n)

S
et

P
rio

rit
yB

(R
W

S
tr

in
g

R
es

ul
tin

gA
ct

io
n)

N
ot

ify
R

em
ot

eG
ra

nu
le

B
(E

ct
In

t M
sg

T
yp

e)

G
et

G
ra

nu
le

S
er

ve
rU

R
B

(E
cU

R
 &

In
G

ra
nu

le
S

er
ve

r,
 R

W
S

tr
in

g&
 G

ra
nu

le
D

at
aT

yp
e)

D
el

et
eS

es
si

on
(E

cT
V

oi
d)

D
el

et
eP

ol
lin

gS
es

si
on

(E
cT

V
oi

d)

D
el

et
eI

nt
er

ac
tiv

eI
ng

es
t(

E
cT

V
oi

d)

In
R

eq
ue

st
(c

ha
r*

 D
A

N
fil

e)

G
et

S
ta

te
(v

oi
d)

In
R

eq
ue

st
(D

A
N

m
sg

 *
D

A
N

m
sg

P
tr

)

C
he

ck
P

oi
nt

R
eq

ue
st

(v
oi

d)

F
ill

D
at

a(
In

D
A

N
 *

D
A

N
, i

nt
 *

S
es

si
on

ID
)

In
G

ra
nu

le
S

er
ve

r_
C

(v
oi

d)

~
In

G
ra

nu
le

S
er

ve
r_

C
(v

oi
d)

m
yC

ur
re

nt
D

at
aV

ol
um

eK
ee

p

m
yC

ur
re

nt
R

eq
ue

st
M

ut
ex

m
yD

at
aV

ol
um

eT
hr

es
ho

ld

m
yR

eq
ue

st
T

hr
es

ho
ld

m
yC

ur
re

nt
R

eq
ue

st
s

P
ro

ce
ss

S
ta

te
C

ha
ng

eB
(D

C
E

O
bj

R
ef

T
*

O
bj

R
ef

er
en

ce
)

C
re

at
eR

eq
ue

st
(D

A
N

m
sg

*
D

A
N

m
sg

P
tr

)

C
re

at
eR

eq
ue

st
(c

ha
r*

 D
A

N
fil

e)

D
el

et
eR

eq
ue

st
(in

t R
eq

ue
st

Id
)

D
el

et
eR

eq
ue

st
R

P
C

(in
t R

eq
ue

st
Id

)

G
et

C
ur

re
nt

D
at

aV
ol

um
e(

vo
id

)

G
et

C
ur

re
nt

R
eq

ue
st

s(
vo

id
)

P
ro

cR
eq

ue
st

(p
th

re
ad

_a
dd

r_
t a

rg
)

R
es

to
re

R
eq

ue
st

Li
st

(v
oi

d)

U
pd

at
eC

ur
re

nt
D

at
aV

ol
um

e(
in

t U
pd

at
eV

al
ue

)

U
se

rR
eq

ue
st

R
P

C
(in

t U
pd

at
eV

al
ue

)

U
pd

at
eT

hr
es

ho
ld

R
P

C
(in

t U
pd

at
eV

al
ue

)

U
pd

at
eC

ur
re

nt
R

eq
ue

st
s(

in
t U

pd
at

eV
al

ue
)

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

O
ffp

ag
e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]
O

ffp
ag

e

[D
IS

T
R

 O
B

J]
O

ffp
ag

e

-

 :
in

t

-

 :
ch

ar
 *

-

 :
in

t

-

 :
st

ru
ct

**

+

+

+

 :

in
t

+

+

O
ffp

ag
e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]
O

ffp
ag

e

[D
IS

T
R

 O
B

J]
O

ffp
ag

e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]
O

ffp
ag

e

O
ffp

ag
e

O
ffp

ag
e

+

+

-

 :
E

cs
S

tr
ea

m
ab

le

+

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

+

 :

E
cU

tS
ta

tu
s

+

-

 :
ch

ar
*

-

 :
st

ru
ct

 *
*

-

 :
R

W
S

tr
in

g

-

 :
ch

ar
*

-

 :
ch

ar
*

-

 :
in

t

-

 :
in

t

-

 :
ch

ar
*

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
D

at
eT

im
e

-

 :
D

at
eT

im
e

+

 :

in
t

-

 :
in

t

+

 :

in
t

-

 :
in

t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

in
t

-

 :
ch

ar
*

+

 :

in
t

+

 :

in
t

+

 :

E
cU

tS
ta

tu
s

+

+

-

 :
in

t

-

 :
D

C
E

P
th

re
ad

M
ut

ex

-

 :
in

t

-

 :
in

t

-

 :
in

t

+

 :

in
t

+

 :

D
C

E
O

bj
R

ef
T

*

+

 :

D
C

E
O

bj
R

ef
T

*

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

-

 :
pt

hr
ea

d_
ad

dr
_t

-

 :
in

t

-

 :
in

t

+

 :

in
t

+

 :

in
t

-

 :
in

t

Is
M

ov
ed

T
o

D
ef

in
es

M
an

ag
es

ac
ce

ss
es

In
vo

ke
s

C
on

st
ru

ct
s

E
xc

ha
ng

es
S

ta
te

M
es

sa
ge

s

ac
ce

ss
es

S
en

ds
R

eq
ue

st
T

o

S
en

ds
R

eq
ue

st
T

o

S
en

ds
R

eq
ue

st
T

o

C
re

at
es

Is
M

ov
ed

T
o

bu
ild

s

bu
ild

s

C
on

st
ru

ct
s

S
en

ds
C

on
tr

ol
R

eq
ue

st
sT

o

Is
S

to
re

dI
n

Is
In

vo
ke

dB
y

is
S

to
re

dI
n

 F
ig

u
re

 4
.3

-1
.

In
_I

n
g

es
t_

R
eq

u
es

t_
P

ro
ce

ss
in

g
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-4 305-CD-025-002

In
D

at
aP

re
pr

oc
es

sT
as

k

D
sS

tR
es

ou
rc

eP
ro

vi
de

r

D
sS

ta
gi

ng
D

is
k

D
sC

lR
eq

ue
st

In
D

at
aS

er
ve

rI
ns

er
tio

nT
as

k

In
D

at
aT

ra
ns

fe
rT

as
k

In
G

ra
nu

le
S

er
ve

r_
S

B
In

G
ra

nu
le

A
sy

nc
_S

B

E
cP

F
M

an
ag

ed
S

er
ve

r

In
R

eq
ue

st
F

ile
In

fo

m
yD

an
G

ra
nu

le
F

ile
N

am
e

m
yR

es
um

eF
la

g

m
yC

lie
nt

U
R

m
yR

eq
ue

st
ID

m
yG

ra
nu

le
ID

In
G

ra
nu

le
A

sy
nc

_S
B

(R
W

S
tr

in
g

&
D

A
N

G
ra

nu
le

F
ile

N
am

e,
 E

cT
B

oo
le

an
 R

es
um

eF
la

g,
 E

cT
In

t

R
eq

ue
st

ID
, E

cT
In

t G
ra

nu
le

ID
, I

nG
ra

nu
le

A
sy

nc
_c

*
&

as
yn

c)

~
In

G
ra

nu
le

A
sy

nc
_S

B
(E

cT
V

oi
d)

E
xe

cu
te

B
(E

cT
V

oi
d)

C
he

ck
G

ra
nu

le
S

ta
te

B
(E

cT
In

t R
eq

ue
st

ID
, E

cT
In

t G
ra

nu
le

E
D

, E
cT

In
t R

es
ul

tin
gA

ct
io

n)

S
us

pe
nd

B
(E

ct
In

t R
eq

ue
st

ID
, E

ct
In

tG
ra

nu
le

ID
)

S
et

P
rio

rit
y(

E
ct

In
t R

eq
ue

st
ID

, E
ct

In
tG

ra
nu

le
ID

)

C
an

ce
l(E

ct
In

t R
eq

ue
st

ID
, E

ct
In

tG
ra

nu
le

ID
)

m
yC

lie
nt

U
R

B

m
yL

oc
al

S
er

ve
rB

In
G

ra
nu

le
S

er
ve

r_
S

B
(E

cU
R

U
r

m
yU

R
, E

cS
rR

eq
ue

st
D

is
pa

tc
he

r*
 lo

ca
lS

er
ve

r)

P
ro

ce
ss

R
eq

ue
st

B
(R

W
S

tr
in

g
&

D
A

N
G

ra
nu

le
F

ile
N

am
e,

 E
cT

B
ol

ea
n

R
es

um
eF

la
g,

 E
cT

In
t

R
eq

ue
st

ID
, E

cT
In

t G
ra

nu
le

ID
, I

nG
ra

nu
le

A
sy

nc
-c

*
&

as
yn

c)

R
ec

ei
ve

M
sg

R
A

cc
ep

ta
nc

eB
(E

cC
sM

S
G

*
ne

w
M

es
sa

ge
, E

cU
R

U
r*

 c
lie

nt
U

R
)

m
yD

at
aT

yp
e

m
yI

np
ut

Li
st

m
yI

ns
er

tio
nL

is
t

m
yT

im
eI

ni
tia

te
d

m
yF

ile
T

yp
eA

rr
ay

m
yS

ta
tu

s

In
D

at
aP

re
pr

oc
es

sT
as

k(
R

W
C

S
tr

in
g

D
at

aT
yp

e,
 In

D
at

aP
re

pr
oc

es
sL

is
t*

 In
pu

tL
is

t,

G
lP

ar
am

et
er

Li
st

**
 In

se
rt

io
n

Li
st

)

C
le

an
U

p(
E

cT
V

oi
d)

P
re

pr
oc

es
s(

E
cT

V
oi

d)

~
In

D
at

aP
re

pr
oc

es
sT

as
k(

E
cT

V
oi

d)

m
yT

ot
al

D
at

aV
ol

um
e

m
yT

ra
ns

fe
rU

R

m
yR

es
ou

rc
eU

R

m
yC

ur
re

nt
S

ta
te

G
et

D
T

In
fo

(R
W

Li
st

 F
ile

In
fo

)

T
ra

ns
fe

rD
at

aG
ra

nu
le

(R
W

lis
t F

ile
In

fo
)

C
he

ck
G

ra
nu

le
S

ta
te

(E
ct

In
t R

es
ul

tin
gA

ct
io

n)

C
an

ce
lR

es
ou

rc
e(

E
cT

V
oi

d)

S
et

P
rio

rit
yR

es
ou

rc
eB

(E
cT

In
t P

rio
rit

y)

S
et

P
rio

rit
yT

ra
ns

fe
rB

(E
cT

In
t P

rio
rit

y)

m
yI

ns
er

tio
nL

is
t

m
yD

at
aS

er
ve

rU
R

m
yD

at
aT

yp
e

m
yS

ta
tu

s

In
D

at
aS

er
ve

rI
ns

er
tio

nT
as

k(
R

W
C

S
tr

in
g

D
at

aT
yp

e,
 D

sG
lP

ar
am

et
er

Li
st

*
In

se
rt

io
nL

is
t)

S
en

dC
an

ce
l(E

cT
V

oi
d)

S
en

dI
ns

er
t(

E
cT

V
oi

d)

U
pd

at
eS

ta
tu

s(
E

cT
In

t I
ns

er
tS

ta
tu

s)

S
en

dS
us

pe
nd

B
(E

cT
V

oi
d)

S
en

dS
et

P
rio

rit
yB

(E
cT

V
oi

d)

S
en

dR
es

um
eB

(E
cT

V
oi

d)

~
In

D
at

aS
er

ve
rI

ns
er

tio
nT

as
k(

vo
id

)

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]
[D

IS
T

R
 O

B
J]

O
ffp

ag
e

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
R

W
S

tr
in

g

-

 :
E

cT
B

oo
le

an

-

 :
E

ct
U

R

-

 :
E

ct
In

t

-

 :
E

ct
In

t

+

+

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
E

cT
U

R

-

 :
E

cT
U

R

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
C

S
tr

in
g

-

 :
In

D
at

aP
re

pr
oc

es
sL

is
t*

-

 :
G

lP
ar

am
et

er
Li

st
*

-

 :
E

cT
F

lo
at

-

 :
R

W
T

P
tr

O
rd

er
ed

 V
ec

to
r<

R
W

C
S

tir
ng

>

-

 :
E

cT
In

t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
E

cT
In

t

-

 :
E

cT
U

R

-

 :
E

cT
U

R

 :
R

W
S

tr
in

g

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
G

lP
ar

am
et

er
Li

st
*

-

 :
E

cT
U

R

-

 :
R

W
C

S
tr

in
g

-

 :
E

cT
In

t

+

 :

E
cT

V
oi

d

+

 :

E
cT

In
t

+

 :

E
cT

In
t

+

 :

E
cT

In
t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

In
vo

ke
s

In
vo

ke
s

In
vo

ke
s

C
on

st
ru

ct
s

U
se

s

G
et

S
ta

gi
ng

S
pa

ce

G
et

N
et

w
or

kR
es

ou
rc

es

S
en

ds
A

rc
hi

ve
sR

eq
ue

st
sT

o

P
ro

vi
de

sF
ile

S
ta

te

F
ig

u
re

 4
.3

-2
.

In
_I

n
g

es
t_

G
ra

n
u

le
 P

ro
ce

ss
in

g
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-5 305-CD-025-002

In
R

eq
ue

st

In
D

at
aS

er
ve

rI
ns

er
tio

nT
as

k

In
D

at
aP

re
pr

oc
es

sL
is

t

In
F

ile
T

yp
eT

em
pl

at
e

In
F

ile

In
S

ci
en

ce
D

at
a

In
M

et
ad

at
a

In
S

ou
rc

eM
C

F

In
P

V
M

et
ad

at
a

In
B

O
M

et
ad

at
a

In
B

O
B

in
M

et
ad

at
a

In
S

D
M

et
ad

at
a

In
H

D
F

M
et

ad
at

a

m
yP

ar
am

et
er

D
el

im
ite

r

m
yV

al
ue

D
el

im
ite

r

m
yL

in
eD

el
im

ite
r

m
yS

ep
ar

at
or

P
re

pr
oc

es
s

P
re

pr
oc

es
s

P
re

pr
oc

es
s

In
G

R
IB

D
at

a

In
F

D
F

D
at

a

In
R

ef
or

m
at

D
at

a

In
P

V
M

et
ad

at
a

In
S

D
M

et
ad

at
a

D
sC

ID
es

cr
ip

to
r

In
D

at
aP

re
pr

oc
es

sT
as

k

In
T

O
M

S
D

at
a

In
S

no
w

Ic
eD

at
a

D
sG

lP
ar

am
et

er
Li

st

D
sG

lP
ar

am
et

er

~
In

P
V

M
et

ad
at

a

~
In

S
D

M
et

ad
at

a

m
yI

np
ut

S
ci

en
ce

F
ile

m
yO

ut
pu

tS
ci

en
ce

F
ile

P
re

pr
oc

es
s(

E
cT

V
oi

d)

In
H

D
F

M
et

ad
at

a(
)

~
In

H
D

F
M

et
ad

at
a(

)

P
re

pr
oc

es
s(

)

In
R

ef
or

m
at

D
at

a(
)

~
In

R
ef

or
m

at
D

at
a(

)

P
re

pr
oc

es
s(

)

In
G

R
IB

D
at

a(
)

~
In

G
R

IB
da

ta
()

P
re

pr
oc

es
s(

E
cT

V
oi

d)

In
F

D
F

D
at

a(
)

~
In

F
D

F
D

at
a(

)

m
yF

ile
Id

m
yF

ile
T

yp
e

m
yF

ile
Lo

ca
tio

n

m
yN

od
eN

am
e

m
yE

rr
or

S
ta

tu
s

m
yF

ile
V

ol
um

e

G
et

F
ile

Id
()

T
ra

ns
fe

r(
)

G
et

F
ile

T
yp

e(
)

G
et

F
ile

V
ol

um
e(

)

G
et

F
ile

Lo
ca

tio
n(

)

G
et

E
rr

or
S

ta
tu

s(
)

G
et

N
od

eN
am

e(
)

Lo
ok

_U
p_

T
ab

le

In
B

O
B

in
M

et
ad

at
a(

In
B

O
B

in
S

tr
uc

tu
re

 In
B

oB
in

pu
t)

C
on

ve
rt

B
in

to
A

S
C

II(
)

~
In

B
O

B
in

M
et

ad
at

a(
)P

re
pr

oc
es

s(
vo

id
)

In
B

O
M

et
ad

at
a(

)

~
In

B
O

M
et

ad
at

a(
)

m
yF

ile
T

yp
eR

ow

m
yT

ar
ge

tM
C

F

m
yI

np
ut

F
ile

P
re

pr
oc

es
s(

A
bs

tr
ac

t)

m
yC

ou
nt

er

m
yF

ile
na

m
e_

ve
ct

or

m
yL

is
tC

la
ss

G
et

N
ex

t(
E

cT
V

oi
d)

A
dd

T
oL

is
t(

In
F

ile
*

fil
eo

ne
)

~
In

D
at

aP
re

pr
oc

es
sL

is
t(

E
cT

V
oi

d)

In
D

at
aP

re
pr

oc
es

sL
is

t(
E

cT
C

ha
r*

 lc
la

ss
)

P
re

pr
oc

es
s(

)

In
T

O
M

S
D

at
a(

)

~
In

T
O

M
S

D
at

a(
)

P
re

pr
oc

es
s(

)

In
S

no
w

Ic
eD

at
a(

)

~
In

S
no

w
Ic

eD
at

a(
)

m
yS

Q
LC

m
d

m
yS

ou
rc

eM
C

F

m
yC

tr

m
yC

m
d

m
yN

um
C

ol
s

m
yR

et
C

od
e

m
yF

ile
na

m
e_

ve
ct

or

m
yP

ar
In

fo

In
S

ou
rc

eM
C

F
(R

W
C

S
tr

in
g

S
ou

rc
eM

C
F

)

~
In

S
ou

rc
eM

C
F

(v
oi

d)

G
et

S
ou

rc
eM

C
F

(R
W

C
S

tr
in

g
S

ou
rc

eM
C

F
)

G
et

N
ex

tP
ar

(P
ar

In
fo

**
 P

ar
H

ol
de

r)

m
yF

ile
T

yp
e

m
yD

at
aT

yp
e

m
yF

ile
T

yp
eI

nf
o

m
yS

Q
LC

m
d

m
yC

tr

m
yC

m
d

m
yN

um
C

ol
s

m
yR

et
co

de

m
yF

T
ar

ra
y

m
yF

ile
an

m
e_

ve
ct

or

In
F

ile
T

yp
eT

em
pl

at
e(

R
W

C
S

tr
in

g
D

at
aT

yp
e)

~
In

F
ile

T
yp

eT
em

pl
at

e(
vo

id
)

G
et

D
T

In
fo

(R
W

T
P

tr
O

rd
er

ed
V

ec
to

r<
R

W
C

S
tr

in
g>

**
 V

ec
H

ol
de

r)

G
et

F
T

In
fo

(R
W

C
S

tr
in

g
F

ile
T

yp
e,

 F
ile

T
yp

eI
nf

o*
 F

T
H

ol
de

r)

m
yD

at
aT

yp
e

m
yI

np
ut

Li
st

m
yI

ns
er

tio
nL

is
t

m
yT

im
eI

ni
tia

te
d

m
yF

ile
T

yp
eA

rr
ay

m
yS

ta
tu

s

In
D

at
aP

re
pr

oc
es

sT
as

k(
R

W
C

S
tr

in
g

D
at

aT
yp

e,
 In

D
at

aP
re

pr
oc

es
sL

is
t*

 In
pu

tL
is

t,
G

lP
ar

am
et

er
Li

st
**

 In
se

rt
io

n
Li

st
)

C
le

an
U

p(
E

cT
V

oi
d)

P
re

pr
oc

es
s(

E
cT

V
oi

d)

~
In

D
at

aP
re

pr
oc

es
sT

as
k(

E
cT

V
oi

d)

m
yI

ns
er

tio
nL

is
t

m
yD

at
aS

er
ve

rU
R

m
yD

at
aT

yp
e

m
yS

ta
tu

s

In
D

at
aS

er
ve

rI
ns

er
tio

nT
as

k(
R

W
C

S
tr

in
g

D
at

aT
yp

e,
 D

sG
lP

ar
am

et
er

Li
st

*
In

se
rt

io
nL

is
t)

S
en

dC
an

ce
l(E

cT
V

oi
d)

S
en

dI
ns

er
t(

E
cT

V
oi

d)

U
pd

at
eS

ta
tu

s(
E

cT
In

t I
ns

er
tS

ta
tu

s)

S
en

dS
us

pe
nd

B
(E

cT
V

oi
d)

S
en

dS
et

P
rio

rit
yB

(E
cT

V
oi

d)

S
en

dR
es

um
eB

(E
cT

V
oi

d)

~
In

D
at

aS
er

ve
rI

ns
er

tio
nT

as
k(

vo
id

)

O
ffp

ag
e

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

+

 :

E
cT

In
t

+

 {

ab
st

ra
ct

}

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

+

+

-

 :
In

F
ile

*

-

 :
In

F
ile

*

+

 :

E
cT

In
t

+

+

+

 :

E
cT

In
t

+

+

+

 :

E
cU

tS
ta

tu
s

+

+

+

 :

E
cT

In
t

+

+

-

 :
ch

ar
 *

-

 :
ch

ar
 *

-

 :
ch

ar
 *

-

 :
ch

ar
 *

-

 :
in

t

-

 :
in

t

+

+

+

+

+

+

+

-

 :
R

W
C

S
tr

in
g

+

-

 :
E

cT
In

t

+

+

+

-

 :
F

ile
T

yp
eI

nf
o*

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

+

-

 :
E

cT
In

t

-

 :
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r

<
In

F
ile

>

-

 :
R

W
C

S
tr

in
g

+

 :

In
F

ile

+

 :

E
cT

V
oi

d

+

+

+

 :

E
cU

tS
ta

tu
s

+

+

+

 :

E
cU

tS
ta

tu
s

+

+

-

 :
R

W
C

S
tr

in
g*

-

 :
R

W
C

S
tr

in
g*

-

 :
E

cT
In

t

-

 :
C

S
_C

O
M

M
A

N
D

-

 :
C

S
_I

N
T

-

 :
C

S
_R

E
T

C
O

D
E

-

 :
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r

<
P

ar
In

fo
>

-

 :
P

ar
In

fo
*

+

 :

vo
id

+

 :

vo
id

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g*

-

 :
F

ile
T

yp
eI

nf
o*

-

 :
R

W
C

S
tr

in
g*

-

 :
E

cT
In

t

-

 :
C

S
_C

O
M

M
A

N
D

-

 :
C

S
_I

N
T

-

 :
C

S
_R

E
T

C
O

D
E

-

 :
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r<

R
W

C
S

tr
in

g>

-

 :
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r<

F
ile

T
yp

eI
nf

o>

+

 :

vo
id

+

 :

vo
id

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
C

S
tr

in
g

-

 :
In

D
at

aP
re

pr
oc

es
sL

is
t*

-

 :
G

lP
ar

am
et

er
Li

st
*

-

 :
E

cT
F

lo
at

-

 :
R

W
T

P
tr

O
rd

er
ed

 V
ec

to
r<

R
W

C
S

tir
ng

>

-

 :
E

cT
In

t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
G

lP
ar

am
et

er
Li

st
*

-

 :
E

cT
U

R

-

 :
R

W
C

S
tr

in
g

-

 :
E

cT
In

t

+

 :

E
cT

V
oi

d

+

 :

E
cT

In
t

+

 :

E
cT

In
t

+

 :

E
cT

In
t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

pr
oc

es
se

s

{o
rd

er
ed

}

de
fin

es

S
en

ds
In

se
rt

R
eq

ue
st

V
ia

gu
id

es

su
bm

its

re
fe

re
nc

es
pr

ep
ro

ce
ss

es

bu
ild

s

bu
ild

s

re
fe

re
nc

es

gu
id

es

 F
ig

u
re

 4
.3

-3
.

In
_I

n
g

es
t_

P
re

P
ro

ce
ss

in
g

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-6 305-CD-025-002

In
D

B
A

cc
es

s

In
R

eq
ue

st
S

um
m

ar
yD

at
a

In
R

eq
ue

st
F

ile
In

fo

In
R

eq
ue

st
P

ro
ce

ss
D

at
a

In
D

at
aT

yp
eT

em
pl

at
e

In
R

eq
ue

st
P

ro
ce

ss
H

ea
de

r

In
F

ile
T

yp
eT

em
pl

at
e

In
S

ou
rc

eM
C

F
In

S
es

si
on

In
fo

In
R

eq
ue

st
S

um
m

ar
yH

ea
de

r

S
es

si
on

ID

C
lie

nt
ID

D
el

et
eS

es
si

on
(in

t S
es

si
on

ID
)

S
ea

rc
hS

es
si

on
(in

t S
es

si
on

ID
)

S
ea

rc
hS

es
si

on
(c

ha
r

*C
lie

nt
ID

)

Li
st

S
es

si
on

s(
vo

id
)

A
dd

S
es

si
on

(c
ha

r
*C

lie
nt

ID
, i

nt
 S

es
si

on
ID

)

m
yD

at
aT

yp
e

m
yF

ile
T

yp
e

m
yM

C
F

T
ab

le

In
S

ou
rc

eM
C

F
(v

oi
d)

~
In

S
ou

rc
eM

C
F

(v
oi

d)

In
E

xt
er

na
lD

at
aP

ro
vi

de
rI

nf
o

m
yD

B
A

cc
es

s

G
et

S
ta

tis
tic

s(
co

ns
t I

nT
H

LS
ea

rc
hC

rit
er

ia
, c

on
st

 R
W

C
S

tr
in

gf
ile

na
m

e,
 in

t r
ow

C
ou

nt
)

In
R

eq
ue

st
S

um
m

ar
yH

ea
de

r(
In

D
B

A
cc

es
s*

 D
B

A
cc

es
s)

ou
rD

B
M

ut
ex

ou
rS

Y
B

A
S

E
P

at
h

ou
rI

F
ile

ou
rU

se
rN

am
e

ou
rP

as
sw

or
d

ou
rS

er
ve

rN
am

e

ou
rD

at
ab

as
e

ou
rC

on
te

xt
P

tr

m
yC

on
ne

ct
io

nP
tr

m
yC

om
m

an
dP

tr

m
yC

on
nS

ta
tu

s

In
D

B
A

cc
es

s(
vo

id
)

~
In

D
B

A
cc

es
s(

vo
id

)

D
B

In
it(

vo
id

)

D
B

C
on

ne
ct

(v
oi

d)

D
B

D
is

co
nn

ec
t(

vo
id

)

D
B

E
xi

t(
vo

id
)

E
xe

cu
te

S
to

re
dP

ro
c(

R
W

C
S

tr
in

g)

E
xe

cu
te

C
m

d(
R

W
C

S
tr

in
g)

G
et

C
m

dP
tr

(v
oi

d)

In
N

ex
tA

va
ila

bl
eI

D

~
In

R
eq

ue
st

S
um

m
ar

yH
ea

de
r(

vo
id

)

G
et

S
um

m
ar

yH
ea

de
r(

co
ns

t I
nT

H
LS

ea
rc

hC
rit

er
ia

 s
ea

rc
hC

rit
er

ia
, c

on
st

 R
W

C
S

tr
in

g

fil
en

am
e,

 E
cT

In
t r

ow
C

ou
nt

)

m
yD

B
A

cc
es

s

m
yR

eq
ue

st
ID

In
N

ex
tA

va
ila

bl
eI

D
(I

nD
B

A
cc

es
s*

)

~
In

N
ex

tA
va

ila
bl

eI
D

(v
oi

d)

G
et

R
eq

ID
(v

oi
d)

G
et

N
ew

R
eq

ID
(in

t&
)

m
yD

B
A

cc
es

s

G
et

R
eq

ue
st

D
at

a(
co

ns
t E

cT
In

t r
eq

ue
st

ID
,

R
W

T
P

tr
O

rd
er

ed
V

ec
to

r<
In

T
D

bR
eq

F
ile

In
fo

>
&

fil
eI

nf
o)

In
R

eq
ue

st
F

ile
In

fo
(I

nD
B

A
cc

es
s*

 D
B

A
cc

es
s)

~
In

R
eq

ue
st

F
ile

In
fo

(E
cT

V
oi

d)

In
se

rt
(c

on
st

 E
cT

In
t r

eq
ue

st
ID

, E
cT

In
t d

at
aG

ra
nI

D
, R

W
C

S
tr

in
g

fil
eI

D
, R

W
C

S
tr

in
g

so
ur

ce
D

irI
D

, R
W

C
S

tr
in

g
ta

rg
et

D
irI

D
, E

cT
In

t f
ile

S
iz

e,
 E

cT
In

t r
ec

or
dS

iz
e,

 R
W

T
im

e

be
gi

nD
at

eT
im

e)

U
pd

at
eF

ile
S

ta
tu

s(
co

ns
t E

cT
In

t r
eq

ue
st

ID
, c

on
st

 E
cT

In
t d

at
aG

ra
nu

le
ID

, c
on

st

E
cT

In
t f

ile
S

ta
tu

s)

U
pd

at
eF

ile
S

ta
tu

s(
co

ns
t E

cT
In

t R
eq

ue
st

ID
, c

on
st

 E
cT

In
t D

at
aG

ra
nu

le
ID

, c
on

st

R
W

C
S

tr
in

g
fil

eI
D

, c
on

st
 E

cT
In

t f
ile

S
ta

tu
s)

U
pd

at
eF

ile
S

ta
te

(c
on

st
 E

cT
In

t r
eq

ue
st

ID
, c

on
st

 E
cT

In
t d

at
aG

ra
nu

le
ID

, c
on

st

R
W

C
S

tr
in

g
fil

eI
D

, c
on

st
 R

W
C

S
tr

in
g

fil
eS

ta
te

)

m
yS

ta
te

m
yE

xt
er

na
lD

at
aP

ro
vi

de
r

m
yI

ng
es

tM
od

e

U
pd

at
eS

ta
te

(R
W

S
tr

in
g

S
ta

te
)

G
et

S
ta

te
(R

W
S

tr
in

g
D

at
aP

ro
vi

de
rI

D
, R

W
S

tr
in

g
S

ta
te

)

In
E

xt
er

na
lD

at
aP

ro
vi

de
rI

nf
o(

E
cT

vo
id

)

~
In

E
xt

er
na

lD
at

aP
ro

vi
de

rI
nf

o(
E

cT
vo

id
)

ou
rI

ns
ta

nc
e

ou
rD

at
aT

yp
eT

em
pl

at
eL

is
t

m
yD

B
A

cc
es

s

In
st

an
ce

(I
nD

B
A

cc
es

s*
 D

B
A

cc
es

s,
 E

cU
tS

ta
tu

s&
st

at
us

)

G
et

D
at

aT
yp

es
(R

W
T

P
tr

O
rd

er
ed

V
ec

to
r<

R
W

C
S

tr
in

g>
&

 d
at

aT
yp

es
)

G
et

R
eq

M
gr

U
R

(c
on

st
 R

W
C

S
tr

in
g

da
ta

T
yp

e,
 R

W
C

S
tr

in
g&

 r
eq

M
gr

U
R

)

G
et

D
S

A
rc

hi
ve

U
R

(c
on

st
 R

W
C

S
tr

in
g

da
ta

T
yp

e,
 R

W
C

S
tr

in
g&

 D
S

A
rc

hi
ve

U
R

)

G
et

D
S

R
es

ou
rc

eU
R

(c
on

st
 R

W
C

S
tr

in
g

da
ta

T
yp

e,
 R

W
C

S
tr

in
g&

 D
S

R
es

ou
rc

eU
R

)

G
et

D
at

aT
yp

eI
nf

o(
co

ns
t R

W
C

S
tr

in
g

da
ta

ty
pe

, R
W

C
S

tr
in

g&
 D

S
A

rc
hi

ve
U

R
, R

W
C

S
tr

in
g&

re
qM

gr
U

R
, R

W
C

S
tr

in
g&

 D
S

R
es

ou
rc

eU
R

)

U
pd

at
eU

R
(c

on
st

 R
W

C
S

tr
in

g
da

ta
T

yp
e,

 c
on

st
 R

W
C

S
tr

in
gU

R
, c

on
st

 In
T

B
dU

R
T

yp
et

yp
eO

fU
R

)

~
In

D
at

aT
yp

eT
em

pl
at

e(
E

cT
V

oi
d)

In
D

at
aT

yp
eT

em
pl

at
e(

In
D

B
A

cc
es

s*
 D

B
A

cc
es

s)

m
yD

at
aT

yp
e

m
yR

eq
ue

st
ID

m
yD

at
aG

ra
nu

le
ID

m
yD

at
aG

ra
nu

le
V

ol
um

e

m
yF

in
al

S
ta

tu
s

m
yT

ot
al

F
ile

C
ou

nt

m
yT

im
eT

oP
re

pr
oc

es
s

m
yT

im
eT

oA
rc

hi
ve

m
yT

im
eT

oX
fe

r

m
yR

et
ry

C
ou

nt

m
yD

B
A

cc
es

s

In
R

eq
ue

st
S

um
m

ar
yD

at
a(

In
D

B
A

cc
es

s*
 D

B
A

cc
es

s)

~
In

R
eq

ue
st

S
um

m
ar

yD
at

a(
vo

id
)

G
et

S
um

m
ar

yD
at

a(
co

ns
t E

cT
In

t r
eq

ue
st

ID
, c

on
st

 R
W

C
S

tr
in

g
fil

en
am

e,
 E

cT
In

t&

ro
w

C
ou

nt
)

m
yD

B
A

cc
es

s

G
et

G
ra

ph
ic

al
D

at
a(

co
ns

t E
cT

In
t r

eq
ue

st
ID

, c
on

st
 R

W
C

S
tr

in
g

fil
eN

am
e,

E
cT

In
t&

ro
w

C
ou

nt
)

G
et

G
ra

ph
ic

al
D

at
a(

co
ns

t R
W

C
S

tr
in

g
fil

rn
am

e,
 E

cT
In

t&
ro

w
C

ou
nt

)

G
et

G
ra

ph
ic

al
D

at
a(

co
ns

t R
W

C
S

tr
in

g
ex

te
rn

al
D

at
aP

ro
vi

de
r,

 c
on

st
 R

W
C

S
tr

in
g

fil
eN

am
e,

E
cT

In
t&

ro
w

C
ou

nt
)

In
se

rt
(E

cT
In

t r
eq

ue
st

ID
, E

cT
In

t r
eq

P
rio

, E
cT

In
t s

eq
ue

nc
eI

D
, E

cT
In

t s
es

si
on

ID
,

R
W

C
S

tr
in

g
in

ge
st

T
yp

e,
 R

W
C

S
tr

in
g

ex
tD

at
aP

ro
v,

 R
W

T
im

e
ex

pD
at

eT
im

e,
 E

cT
In

t

to
tD

at
aV

ol
, E

cT
In

t t
ot

G
ra

nC
nt

, R
W

S
tr

in
g

m
is

si
on

, E
cT

In
t t

ot
F

ile
C

nt
, R

W
T

im
e

pr
oc

S
ta

rt
T

im
e,

 R
W

C
S

tr
in

g
re

qM
gr

U
R

)

R
eq

ue
st

D
at

aS
el

ec
tC

m
d(

E
cT

V
oi

d)

R
eq

ue
st

D
at

aF
et

ch
(R

W
C

S
tr

in
g

S
Q

LC
m

d,
 R

W
C

S
tr

in
g

fil
en

am
e,

 E
cT

In
t&

ro
w

C
ou

nt
)

G
et

D
at

aV
ol

um
e(

co
ns

t E
cT

In
t r

eq
ue

st
ID

, E
cT

In
t&

da
ta

V
ol

um
e)

U
pd

at
eS

ta
te

fo
rS

ta
te

C
ha

ng
eB

(R
W

C
S

tr
in

g
R

eq
ue

st
S

ta
te

, i
nt

 r
eq

ue
st

ID
)

G
et

In
te

ra
ct

iv
eU

se
rS

ta
tu

s(
R

W
C

S
tr

in
g

E
xt

er
na

lD
at

aP
ro

vi
de

r)

In
R

eq
ue

st
P

ro
ce

ss
H

ea
de

r(
In

D
B

A
cc

es
s*

)

~
In

R
eq

ue
st

P
ro

ce
ss

H
ea

de
r(

E
cT

V
oi

d)

D
el

et
e(

E
cT

In
t R

eq
ue

st
ID

, R
W

T
im

e
P

ro
ce

ss
in

gE
nd

D
at

aT
im

e)

U
pd

at
eP

rio
rit

y(
co

ns
t E

cT
In

t r
eq

ue
st

P
rio

rit
y,

 c
on

st
 E

cT
In

t r
eq

ue
st

ID
)

U
pd

at
eP

rio
rit

y(
co

ns
t E

cT
In

t r
eq

ue
st

P
rio

rit
y,

 c
on

st
 R

W
C

S
tr

in
g

ex
te

rn
al

D
at

aP
ro

vi
de

r)

U
pd

at
eP

er
ce

nt
C

om
pl

et
e(

co
ns

t E
cT

In
t p

er
ce

nt
C

om
pl

et
e,

 c
on

st
 E

cT
In

t r
eq

ue
st

ID
)

U
pd

at
eS

ta
te

(c
on

st
 R

W
C

S
tr

in
g

re
qu

es
tS

ta
te

, c
on

st
 E

cT
In

t r
eq

ue
st

ID
)

G
et

R
eq

ue
st

D
at

a(
co

ns
t E

cT
In

t r
eq

ue
st

ID
, c

on
st

 R
W

C
S

tr
in

g
fil

en
am

e,
 E

cT
In

t&

ro
w

co
un

t)

G
et

R
eq

ue
st

D
at

a(
co

ns
t R

W
C

S
tr

in
g

fil
en

am
e,

 E
cT

In
t r

ow
C

ou
nt

)

G
et

R
eq

ue
st

D
at

a(
co

ns
t R

W
C

S
tr

in
g

ex
te

rn
al

D
at

aP
ro

vi
de

r,
 c

on
st

 R
W

C
S

tr
in

g
fil

en
am

e,

E
cT

In
t&

 r
ow

C
ou

nt
)

G
et

R
eq

D
at

aB
yi

ng
es

tT
yp

e(
co

ns
t R

W
C

S
tr

in
g

in
ge

st
T

yp
e,

 c
on

st
 R

W
C

S
tr

in
g

fil
en

am
e,

E
cT

In
t&

 r
ow

C
ou

nt
)

G
et

R
eq

ue
st

M
gr

U
R

(c
on

st
 E

cT
In

t r
eq

ue
st

ID
, R

W
C

S
tr

in
g&

re
qM

gr
U

R
)

m
yD

B
A

cc
es

s

In
R

eq
ue

st
P

ro
ce

ss
D

at
a(

In
D

B
A

cc
es

s*
 D

B
A

cc
es

s)

~
In

R
eq

ue
st

P
ro

ce
ss

D
at

a(
E

cT
V

oi
d)

In
se

rt
(c

on
st

 E
ct

In
t r

eq
ue

st
ID

, c
on

st
 In

T
D

bR
eq

P
ro

ce
ss

D
at

a*
 r

eq
P

ro
ce

ss
D

at
a,

co
ns

t

R
W

T
P

tr
O

rd
er

ed
V

ec
to

r<
In

T
D

bR
eq

F
ile

In
fo

>
*

re
qF

ile
In

fo
Li

st
)

G
et

G
ra

nu
le

S
ta

te
F

or
R

ec
ov

er
yB

(E
cT

In
t R

eq
eu

st
ID

, E
cT

In
t G

ra
nu

le
ID

, R
W

S
tr

in
g

R
es

ul
tin

gA
ct

io
n)

U
pd

at
eS

ta
te

(c
on

st
 R

W
C

S
tr

in
g

da
ta

T
yp

eS
ta

te
, c

on
st

 E
cT

In
t r

eq
ue

st
ID

, c
on

st
 E

cT
In

t

gr
an

ul
eI

D
, c

on
st

 R
W

C
S

tr
in

g
da

ta
T

yp
e

co
ns

t E
cT

In
t t

im
eT

oC
om

pl
et

eS
ta

te
)

G
et

R
eq

ue
st

D
at

a(
co

ns
t E

cT
In

t r
eq

ue
st

ID
, c

on
st

 R
W

C
S

tr
in

g
fil

en
am

e,
 E

cT
In

t&

ro
w

co
un

t)

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
in

t

-

 :
ch

ar
 *

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

vo
id

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
In

D
B

A
cc

es
s*

+

 :

E
cU

tS
ta

tu
s

+

-

 :
D

C
E

P
th

re
ad

M
ut

ex
 =

 s
ta

tic

-

 :
R

W
C

S
tr

in
g

=
 s

ta
tis

-

 :
R

W
C

S
tr

in
g

=
 s

ta
tic

-

 :
R

W
C

S
tr

in
g

=
 s

ta
tic

-

 :
R

W
C

S
tr

in
g

=
 s

ta
tic

-

 :
R

W
C

S
tr

in
g

=
 s

ta
tic

-

 :
R

W
C

S
tr

in
g

=
 s

ta
tic

-

 :
C

S
_C

O
N

T
E

X
T

*
=

 s
ta

tic

-

 :
C

S
_C

O
N

N
E

C
T

IO
N

*

-

 :
C

S
_C

O
M

M
A

N
D

*

-

 :
In

T
D

bC
on

nS
ta

tu
s

+

 :

vo
id

+

 :

vo
id

+

 :

st
at

is
 E

cU
tS

ta
tu

s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

st
at

ic
 E

cU
tS

ta
tu

s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

C
S

_C
O

M
M

A
N

D
*

+

-

 :
In

D
B

A
cc

es
s*

-

 :
in

t

+

+

+

 :

in
t

+

 :

E
cU

tS
ta

tu
s

-

 :
In

D
B

A
cc

es
s*

+

 :

E
cU

tS
ta

tu
s

+

+

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

 E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
S

tr
in

g

-

 :
R

W
S

tr
in

g

-

 :
R

W
S

tr
in

g

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

+

-

 :
In

D
at

aT
yp

eT
em

pl
at

e*
 =

 s
ta

tic

-

 :
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r<

In
T

D
bD

at
aT

yp
eT

em
pl

at
e

=
 s

ta
tic

-

 :
In

D
B

A
cc

es
s*

+

 :

st
at

ic
 In

D
at

aT
yp

eT
em

pl
at

e*

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

±

-

 :
R

W
C

S
tr

in
g

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
in

t

-

 :
In

D
B

A
cc

es
s*

+

+

+

 :

E
cU

tS
ta

tu
s

-

 :
In

D
B

A
cc

es
s*

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

+

 :

st
at

ic
 R

W
C

S
tr

in
g

+

 :

E
cT

uS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

+

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
In

D
B

A
cc

es
s*

+

+

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

Is
M

ov
ed

to

 F
ig

u
re

 4
.3

-4
.

In
_I

n
g

es
t_

D
at

ab
as

e_
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-7 305-CD-025-002

In
S

es
si

on

In
S

er
ve

r
In

G
U

IS
es

si
on

In
P

ol
lin

gI
ng

es
tS

es
si

on

In
R

eq
ue

st
C

on
tr

ol
le

r
In

M
ed

ia
In

ge
st

m
yC

lie
nt

Id

m
yS

es
si

on
G

W
B

H

m
yS

es
si

on
Id

In
itS

es
sS

er
ve

r(
ch

ar
 *

G
at

ew
ay

B
H

)

P
ro

ce
ss

R
eq

ue
st

(v
oi

d)

R
es

um
eS

es
si

on
(v

oi
d)

S
us

pe
nd

S
es

si
on

(v
oi

d)

T
er

m
in

at
eS

es
si

on
(v

oi
d)

m
yS

es
si

on
C

ou
nt

S
ta

rt
S

er
ve

r(
vo

id
)

m
tD

at
aT

yp
eL

is
t

m
yD

at
aP

ro
vi

de
r

m
yD

at
aP

ro
vi

de
r

m
yE

xp
rD

at
e

m
yF

tp
F

ile
Li

st

m
yH

os
tN

am
eL

is
t

m
yO

ld
F

ile
s

m
yD

at
aT

yp
eC

ou
nt

m
yP

ol
lin

gT
im

er

m
yS

ou
rc

eD
ire

ct
or

yL
is

t

In
P

ol
lin

gI
ng

es
tS

es
si

on
(in

t a
rg

c,
 c

ha
r

**
ar

gv
, i

nt
 s

ta
tu

s)

C
he

ck
F

ile
s(

ch
ar

 *
H

os
tN

am
e,

 c
ha

r
*D

ir,
 In

T
P

oL
is

t *
*N

ew
F

ile
Li

st
, i

nt
*N

ew
F

ile
C

ou
nt

)

C
le

an
up

D
ire

ct
or

y(
In

T
D

at
aT

yp
eL

is
t *

D
T

Li
st

, i
nt

 D
T

C
ou

nt
)

D
el

et
eI

te
m

(I
nT

P
oL

is
t*

*
Li

st
, c

ha
r

*D
at

a)

D
el

et
eL

is
t(

In
T

P
oL

is
t*

*
Li

st
)

D
el

iv
er

R
es

po
ns

e(
ch

ar
 *

R
es

po
ns

eF
ile

)

In
itL

is
t(

In
T

P
oL

is
t*

*)

In
se

rt
Li

st
(I

nT
P

oL
is

t*
*

Li
st

, c
ha

r
*D

at
a)

Is
F

ile
N

ew
(c

ha
r

*F
ile

N
am

e)

Is
Ite

m
In

Li
st

(I
nT

P
oL

is
t*

*
Li

st
, c

ha
r

*D
at

a)

P
ro

ce
ss

R
eq

ue
st

(c
ha

r
*

D
A

N
F

ile
)

P
ro

ce
ss

R
eq

ue
st

(I
nT

D
at

aT
yp

eL
is

t *
D

T
Li

st
, i

nt
 D

T
C

ou
nt

)

In
R

eq
ue

st
S

um
m

ar
yH

ea
de

r

In
R

eq
ue

st
M

an
ag

er
_C

In
R

eq
ue

st
P

ro
ce

ss
H

ea
de

r

In
H

is
to

ry
Lo

g

In
In

te
ra

ct
iv

eI
ng

es
tB

D
sS

tR
es

ou
rc

eP
ro

vi
de

r

C
re

at
eR

eq
ue

st
(D

A
N

m
sg

*
D

A
N

m
sg

P
tr

)

C
re

at
eR

eq
ue

st
(c

ha
r*

 D
A

N
fil

e)

In
In

ge
st

M
ai

nW
in

do
w

C
he

ck
P

riv
ile

ge
s(

R
W

S
tr

in
g

U
se

rI
D

)

R
ec

ei
ve

M
sg

(E
cT

V
oi

d)

S
en

dM
sg

(E
cT

V
oi

d)

P
ro

ce
ss

R
eq

ue
st

(I
nT

H
LS

ea
rc

hC
rit

er
ia

 S
ea

rc
hC

rit
er

ia
, E

cT
In

t D
et

ai
lL

ev
el

, E
cT

In
t*

N
um

O
fR

ow
s,

 R
W

C
S

tr
in

g
H

is
tL

og
F

ile
)

P
ro

ce
ss

R
eq

ue
st

(E
cT

In
t R

eq
ID

, E
cT

In
t*

 N
um

O
fR

ow
s,

 R
W

C
S

tr
in

g
H

is
tL

og
F

ile
)

In
R

eq
ue

st
P

ro
ce

ss
D

at
a

m
ai

n(
)

E
cP

F
M

an
ag

ed
S

er
ve

r

E
cP

F
M

an
ag

ed
S

er
ve

r

In
R

eq
ue

st
S

um
m

ar
yD

at
a

In
R

eq
ue

st
M

an
ag

er
_S

E
cP

F
M

an
ag

ed
S

er
ve

r

m
yD

A
N

ID
B

m
yU

se
rN

am
eB

E
xe

cu
te

S
cr

ip
tB

(E
cT

V
oi

d)

P
ro

ce
ss

U
se

rN
am

eB
(R

W
S

tr
in

g
U

se
rN

am
e,

 E
cU

se
rP

ro
fil

e&
 th

eU
se

r)

G
et

D
A

N
H

ea
de

rB
(R

W
Li

st
 H

ea
de

rI
nf

or
m

at
io

n)

G
et

D
at

aT
yp

eI
nf

or
m

at
io

nB
(R

W
Li

st
 D

at
aT

yp
eI

nf
or

m
at

io
n)

P
ro

ce
ss

D
irS

pe
cS

in
gl

eD
A

N
B

(R
W

S
tr

in
g

D
ire

ct
or

yN
am

e,
 R

W
S

tr
in

g
D

at
aT

yp
e,

 R
W

Li
st

D
A

N
H

ea
de

r)

P
ro

ce
ss

D
irS

pe
cM

ul
tiD

A
N

B
(R

W
S

tr
in

g
D

ire
ct

or
yN

am
e,

 R
W

S
tr

in
g

D
at

aT
yp

e,
 R

W
Li

st
D

A
N

H
ea

de
r)

B
ui

ld
D

A
N

B
(R

W
Li

st
 F

ile
Li

st
, R

W
Li

st
 D

at
aT

yp
e,

 R
W

Li
st

 D
A

N
H

ea
de

r)

W
rit

eD
A

N
G

ro
up

B
(R

W
Li

st
 F

ile
Li

st
, R

W
Li

st
 D

at
aT

yp
e)

P
ro

ce
ss

In
te

ra
ct

iv
eD

A
N

S
pe

cB
(E

cT
V

oi
d)

P
ro

ce
ss

D
A

N
In

ge
st

B
(E

cT
V

oi
d)

D
et

er
m

in
eF

ile
S

iz
eB

(R
W

S
tr

in
g

F
ile

N
am

e,
 R

W
S

tr
in

g
F

ile
Lo

ca
tio

n)

W
rit

eD
A

N
H

ea
de

rB
(R

W
Li

st
 H

ea
de

rL
is

t)

m
yU

se
rN

am
e

G
et

D
D

R
F

ile
(E

cT
In

t D
D

R
Lo

ca
tio

n,
 E

cT
In

t M
ed

ia
T

yp
e,

 R
W

C
S

tr
in

g
D

D
R

F
ile

N
am

e)

A
llo

cD
ev

ic
e(

E
cT

In
t M

ed
ia

T
yp

e)

D
ea

llo
cD

ev
ic

e(
vo

id
)

A
llo

cS
tD

is
k(

vo
id

)

D
ea

llo
cS

tD
is

k(
vo

id
)

M
ou

nt
M

ed
ia

(R
W

C
S

tr
in

g
M

ed
ia

V
ol

ID
)

D
is

m
ou

nt
M

ed
ia

(v
oi

d)

C
op

y(
vo

id
)

In
se

rt
R

eq
ue

st
B

(E
cT

In
t*

 R
eq

ID
)

P
ro

ce
ss

R
eq

ue
st

B
(E

cT
In

t R
eq

ID
)

P
ro

ce
ss

R
eq

ue
st

(v
oi

d)

G
et

B
ar

C
od

eB
(R

W
S

tr
in

g
B

ar
C

od
e)

C
he

ck
P

riv
ile

ge
(c

ha
r

*U
se

rN
am

e)

m
yR

eq
ue

st
Id

m
yU

pd
at

eT
yp

e

P
ro

ce
ss

R
eq

ue
st

(E
cT

In
t R

eq
ue

st
ID

, E
cT

In
t C

on
tr

ol
T

yp
e,

 E
cT

In
t C

on
tr

ol
D

at
a)

P
ro

ce
ss

S
ea

rc
h(

E
cT

In
t S

ea
rc

hT
yp

e,
 R

W
C

S
tr

in
g

S
ea

rc
hV

al
ue

, E
cT

In
t D

et
ai

lL
ev

el
,

E
cT

In
t*

 N
um

O
fR

ow
s,

 R
W

C
S

tr
in

g
R

eq
In

fo
F

ile
)

P
ro

ce
ss

S
ea

rc
h(

E
cT

In
t R

eq
ue

st
ID

, E
cT

In
t*

 N
um

O
fR

ow
s,

 R
W

C
S

tr
in

g
R

eq
In

fo
F

ile
)

C
re

at
eR

eq
ue

st
Li

st
B

(R
W

S
tr

in
g

C
on

tr
ol

C
om

m
an

d,
 R

W
Li

st
 R

eq
eu

st
Li

st
)

P
ro

ce
ss

R
eq

ue
st

S
ta

te
C

ha
ng

eB
(E

cT
In

tR
eq

ue
st

ID
, R

W
S

tr
in

g
S

ta
te

C
on

tr
ol

C
om

m
an

d)

P
ro

ce
ss

S
ta

tu
sM

on
ito

rR
eq

ue
st

(in
t R

eq
ue

st
Id

, i
nt

 U
pd

at
eT

yp
e)

[D
IS

T
R

 O
B

J]

[D
IS

T
R

 O
B

J]

-
 :

ch
ar

 *

-

 :
ch

ar
 *

-

 :
in

t

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

-

 :
in

t

+

 :

in
t

-

 :
ch

ar
**

-

 :
ch

ar
*

-

 :
ch

ar
*

-

 :
ch

ar
*

-

 :
In

T
P

oL
is

t*

-

 :
ch

ar
**

-

 :
ch

ar
*

-

 :
in

t

-

 :
in

t

-

 :
ch

ar
*

+

+

 :

in
t

+

 :

in
t

-

 :
vo

id

-

 :
vo

id

+

 :

in
t

-

 :
vo

id

-

 :
vo

id

+

 :

in
t

-

 :
in

t

+

 :

in
t

+

 :

in
t

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[D
IS

T
R

 O
B

J]

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

O
ffp

ag
e

+

 :

in
t

+

 :

in
t

+

 :

E
cT

In
t

+

 :

E
cT

In
t

+

 :

E
cT

In
t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

+

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[D
IS

T
R

 O
B

J]
O

ffp
ag

e

O
ffp

ag
e

-

 :
R

W
S

tr
in

g

-

 :
R

W
S

tr
in

g

+

 :

E
ct

V
oi

d

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
C

S
tr

in
g

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

+

+

 :

in
t

-

 :
in

t

-

 :
in

t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

+

+

A
cc

es
se

s

S
en

ds
R

eq
ue

st
T

o

us
es

R
ec

ei
ve

sR
eq

ue
st

F
ro

m

A
cc

es
s

A
cc

es
se

s

A
cc

es
se

s

S
en

ds
R

eq
eu

st
T

o

S
en

ds
R

eq
ue

st
T

o

M
an

ag
es

F
ig

u
re

 4
.3

-5
.

In
_I

n
g

es
t_

S
es

si
o

n
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-8 305-CD-025-002

In
S

es
si

on

In
S

er
ve

r

In
S

er
ve

rE
xt

R
P

C
_C

C
sG

at
eW

ay

In
S

es
si

on
E

xt
R

P
C

_C

In
M

es
sa

ge

In
D

A
N

In
S

ho
rt

D
A

A

In
Lo

ng
D

A
A

In
Lo

ng
D

D
N

In
S

ho
rt

D
D

N

m
yD

A
N

S
eq

N
o

m
yD

at
aP

ro
vi

de
r

m
yD

at
aT

yp
eC

ou
nt

m
yD

at
aT

yp
eL

is
t

C
he

ck
(c

ha
r

*D
A

A
m

sg
P

tr
)

F
ill

D
A

N
(in

t I
ng

es
tT

yp
e,

 c
ha

r
*P

ar
se

dK
ey

w
or

ds
[])

G
en

er
at

eD
A

N
(c

ha
r

*D
ir,

 c
ha

r
:*

D
at

aT
yp

e,
 in

t D
A

N
S

eq
N

o,
 c

ha
r

*D
A

N
F

ile
)

P
ar

se
dP

V
L(

ch
ar

 *
P

V
LB

uf
fe

r,
 in

t P
V

LL
en

)

m
yS

ho
rt

D
A

A

F
ill

D
A

A
(in

t D
A

A
S

ta
tu

s,
 in

t D
A

N
S

eq
N

o)

m
yL

on
gD

A
A

F
ill

D
A

A
(in

t S
ta

tu
s[

],c
ha

r
*D

at
aT

yp
e[

],c
ha

r
*D

es
cr

ip
to

r,
 in

t F
ile

G
ro

up
C

ou
nt

, i
nt

D
A

N
S

eq
N

o)

In
S

er
ve

rE
xt

R
P

C
_S

In
S

es
si

on
E

xt
R

P
C

_S

In
S

es
si

on
E

cs
R

P
C

_S

In
S

es
si

on
E

cs
R

P
C

_C

In
S

er
ve

rI
nt

R
P

C
_S

In
S

er
ve

rI
nt

R
P

C
_C

In
S

es
si

on
In

tR
P

C
_C

In
S

es
si

on
In

tR
P

C
_S

ec
sD

D
N

(h
an

dl
e_

t G
at

ew
ay

B
H

, c
ha

r
*D

D
N

, e
rr

or
_s

ta
tu

s_
t e

cs
D

D
N

st
at

us
)

ec
sD

D
N

(h
an

dl
e_

t G
at

ew
ay

B
H

, c
ha

r
*D

D
N

m
sg

, e
rr

or
_s

ta
tu

s_
t e

cs
D

D
N

st
at

us
)

D
el

et
eS

es
si

on
(h

an
dl

e_
t I

nS
er

ve
rB

H
, i

nt
 S

es
si

on
Id

, e
rr

or
_s

ta
tu

s_
t *

D
el

S
es

sS
ta

tu
s)

D
el

et
eS

es
si

on
(h

an
dl

e_
t I

nS
er

ve
rB

H
, i

nt
 S

es
si

on
Id

, e
rr

or
_s

ta
tu

s_
t *

D
el

S
es

sS
ta

tu
s)

C
re

at
eS

es
si

on
(h

an
dl

e_
t I

nS
er

ve
rB

H
, c

ha
r

*G
at

ew
ay

S
tr

in
gB

H
, e

rr
or

_s
ta

tu
s_

t
*C

re
at

eS
es

sS
ta

tu
s)

ex
tD

D
A

(h
an

dl
e_

t I
nS

es
sB

H
, c

ha
r

*D
D

A
m

sg
, e

rr
or

_s
ta

tu
s_

t *
ex

tD
D

A
st

at
us

)

ex
tD

A
N

(h
an

dl
e_

t I
nS

es
sB

H
, c

ha
r

*D
A

N
m

sg
, c

ha
r

**
D

A
A

m
sg

, e
rr

or
_S

ta
tu

s_
t

*e
xt

D
A

N
st

at
us

)

ex
tD

D
A

(h
an

dl
e_

t I
nS

es
sB

H
, c

ha
r

*D
D

A
m

sg
, e

rr
or

_s
ta

tu
s_

t *
st

at
us

)

ex
tD

A
N

(h
an

dl
e_

t I
nS

es
sB

H
, c

ha
r

*D
A

N
m

sg
, c

ha
r

**
D

A
A

m
sg

, e
rr

or
_s

ta
tu

s_
t

*e
xt

D
A

N
st

at
us

)

In
tD

D
N

(h
an

dl
e_

t I
nS

es
sB

H
, c

ha
r

*D
D

N
, e

rr
or

_s
ta

tu
s_

t I
nt

D
D

N
st

at
us

)

In
D

D
N

(h
an

dl
e_

t I
nS

es
sB

H
, c

ha
r

*D
D

N
, e

rr
or

_s
ta

tu
s_

t I
nD

D
N

st
at

us
)

~
In

R
eq

ue
st

In
fo

(v
oi

d)

m
yL

on
gD

D
N

F
ill

D
D

N
(in

t S
ta

tu
s[

],
ch

ar
 *

D
ire

co
tr

y,
 c

ha
r

*F
ile

Id
, i

nt
 F

ile
C

ou
nt

, i
nt

D
A

N
S

eq
N

o)

G
et

M
sg

Le
ng

th
(c

ha
r

*M
sg

P
tr

)

In
M

es
sa

ge
()

m
yS

ho
rt

D
D

N

F
ill

D
D

N
(in

t D
D

N
S

ta
tu

s,
 in

t D
A

N
S

eq
N

o)

In
S

es
si

on
In

fo

S
es

si
on

ID

C
lie

nt
ID

D
el

et
eS

es
si

on
(in

t S
es

si
on

ID
)

S
ea

rc
hS

es
si

on
(in

t S
es

si
on

ID
)

S
ea

rc
hS

es
si

on
(c

ha
r

*C
lie

nt
ID

)

Li
st

S
es

si
on

s(
vo

id
)

m
yS

es
si

on
C

ou
nt

S
ta

rt
S

er
ve

r(
vo

id
)

C
re

at
eS

es
si

on
(h

an
dl

e_
t I

nS
er

ve
rB

H
, c

ha
r

*G
at

ew
ay

S
tr

in
gB

H
, e

rr
or

_s
ta

tu
s_

t
*C

re
at

eS
es

sS
ta

tu
s)

In
R

eq
ue

st
M

an
ag

er
_C

In
R

eq
ue

st
M

an
ag

er
_S

In
R

eq
ue

st
M

an
ag

er

m
yC

lie
nt

Id

m
yS

es
si

on
G

W
B

H

m
yS

es
si

on
Id

In
itS

es
sS

er
ve

r(
ch

ar
 *

G
at

ew
ay

B
H

)

P
ro

ce
ss

R
eq

ue
st

(v
oi

d)

R
es

um
eS

es
si

on
(v

oi
d)

S
us

pe
nd

S
es

si
on

(v
oi

d)

T
er

m
in

at
eS

es
si

on
(v

oi
d)

In
R

eq
ue

st
P

ro
ce

ss
H

ea
de

r

C
re

at
eR

eq
ue

st
(D

A
N

m
sg

*
D

A
N

m
sg

P
tr

)

C
re

at
eR

eq
ue

st
(c

ha
r*

 D
A

N
fil

e)

C
re

at
eR

eq
ue

st
(D

A
N

m
sg

*
D

A
N

m
sg

P
tr

)

C
re

at
eR

eq
ue

st
(c

ha
r*

 D
A

N
fil

e)

m
yC

ur
re

nt
D

at
aV

ol
um

eK
ee

p

m
yC

ur
re

nt
R

eq
ue

st
M

ut
ex

m
yD

at
aV

ol
um

eT
hr

es
ho

ld

m
yR

eq
ue

st
T

hr
es

ho
ld

m
yC

ur
re

nt
R

eq
ue

st
s

P
ro

ce
ss

S
ta

te
C

ha
ng

eB
(D

C
E

O
bj

R
ef

T
*

O
bj

R
ef

er
en

ce
)

C
re

at
eR

eq
ue

st
(D

A
N

m
sg

*
D

A
N

m
sg

P
tr

)

C
re

at
eR

eq
ue

st
(c

ha
r*

 D
A

N
fil

e)

D
el

et
eR

eq
ue

st
(in

t R
eq

ue
st

Id
)

D
el

et
eR

eq
ue

st
R

P
C

(in
t R

eq
ue

st
Id

)

G
et

C
ur

re
nt

D
at

aV
ol

um
e(

vo
id

)

G
et

C
ur

re
nt

R
eq

ue
st

s(
vo

id
)

P
ro

cR
eq

ue
st

(p
th

re
ad

_a
dd

r_
t a

rg
)

R
es

to
re

R
eq

ue
st

Li
st

(v
oi

d)

U
pd

at
eC

ur
re

nt
D

at
aV

ol
um

e(
in

t U
pd

at
eV

al
ue

)

U
se

rR
eq

ue
st

R
P

C
(in

t U
pd

at
eV

al
ue

)

U
pd

at
eT

hr
es

ho
ld

R
P

C
(in

t U
pd

at
eV

al
ue

)

U
pd

at
eC

ur
re

nt
R

eq
ue

st
s(

in
t U

pd
at

eV
al

ue
)

[D
IS

T
R

 O
B

J]

[D
IS

T
R

 O
B

J]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

-

 :
in

t

-

 :
ch

ar
 *

-

 :
in

t

-

 :
st

ru
ct

**

+

+

+

 :

in
t

+

-

 :
Lo

ng
D

A
A

m
sg

+

[D
IS

T
R

 O
B

J] [D
IS

T
R

 O
B

J]

[D
IS

T
R

 O
B

J]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

+

+

+

+

+

+

+

+

+

+

+

+

-

 :
Lo

ng
D

D
N

m
sg

+

+

+

-

 :
S

ho
rt

 D
D

N
 m

sg

+

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
in

t

-

 :
ch

ar
 *

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

-

 :
in

t

+

 :

in
t

+

 :

in
t

[D
IS

T
R

 O
B

J]
[D

IS
T

R
 O

B
J]

-

 :
ch

ar
 *

-

 :
ch

ar
 *

-

 :
in

t

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

-

 :
in

t

-

 :
D

C
E

P
th

re
ad

M
ut

ex

-

 :
in

t

-

 :
in

t

-

 :
in

t

+

 :

in
t

+

 :

D
C

E
O

bj
R

ef
T

*

+

 :

D
C

E
O

bj
R

ef
T

*

+

 :

in
t

+

 :

in
t

+

 :

in
t

+

 :

in
t

-

 :
pt

hr
ea

d_
ad

dr
_t

-

 :
in

t

-

 :
in

t

+

 :

in
t

+

 :

in
t

-

 :
in

t

M
an

ag
es

In
vo

ke
s

R
ec

ei
ve

s/
S

en
ds

Is
In

vo
ke

dB
y

Is
M

an
ag

ed
B

y

In
vo

ke
s

In
se

rt
s

Is
In

vo
ke

dB
y

Is
In

vo
ke

dB
y

F
ig

u
re

 4
.3

-6
.

In
_I

n
g

es
t_

S
es

si
o

n
_M

an
ag

er
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-9 305-CD-025-002

4.3.1 CsGateWay Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
The Gateway translates TCP/IP socket call to the corresponding RPC function.

Attributes:

None

Operations:

None

Associations:

The CsGateWay class has associations with the following classes:
Class: InSessionExtRPC_C Invokes - The Gateway object interfaces with the
InSessionExtRPC object to deliver the DAN and DDA data messages received from the
external Client to Ingest Session.
Class: InServerExtRPC_C IsInvokedBy - The Gateway object interfaces with the
InServerExtRPC to initiate a new Ingest Session through the Ingest Server.

4.3.2 DsCIDescriptor Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class is a Data Server Subsystem class and therefore its attributes and operations are
defined in the Data Server Subsystem documentation. The DsCIDescriptor class provides
the Preprocessing CSC services to access targetMCFs and validate metadata files.

Attributes:

None

 Figure 4.3-4. In_Ingest_Database_Object Model Diagram

4-10 305-CD-025-002

Operations:

None

Associations:

The DsCIDescriptor class has associations with the following classes:
Class: InMetadata guides - The DsCIDescriptor class guides the InMetadata class by
providing services to access target MCFs and validate metadata files.

4.3.3 DsClRequest Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClRequest class has associations with the following classes:
Class: InDataServerInsertionTask SendsArchivesRequestsTo

4.3.4 DsGlParameter Class

Parent Class:Not Applicable

Attributes:

None

4-11 305-CD-025-002

Operations:

None

Associations:

The DsGlParameter class has associations with the following classes:
Class: InDataPreprocessTask builds
DsGlParameterList (Aggregation)

4.3.5 DsGlParameterList Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsGlParameterList class has associations with the following classes:
Class: InDataPreprocessTask builds
Class: InDataServerInsertionTask references

4.3.6 DsStResourceProvider Class

Parent Class:Not Applicable

Attributes:

None

 Figure 4.3-5. In_Ingest_Session Object Model Diagram

4-12 305-CD-025-002

Operations:

None

Associations:

The DsStResourceProvider class has associations with the following classes:
Class: InDataTransferTask GetNetworkResources
Class: InMediaIngest uses

4.3.7 DsStagingDisk Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsStagingDisk class has associations with the following classes:
Class: InDataTransferTask GetStagingSpace
Class: InDataPreprocessTask Uses

4.3.8 EcPFManagedServer Class

Parent Class:Not Applicable

Attributes:

None

4-13 305-CD-025-002

Operations:

None

Associations:

The EcPFManagedServer class has associations with the following classes:
Class: InPollingIngestSession

4.3.9 InBOBinMetadata Class

Parent Class:InBOMetadata
Public:No
Distributed Object:No
Purpose and Description:
This class provides services to preprocess byte ordered binary data.

Attributes:

Look_Up_Table - This attribute defines the appropriate look-up table for conversion from
binary to ASCII.
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

ConvertBintoASCII - This operation converts binary data to ASCII values through the use
of a data/file type specific look-up table.
Arguments:
Return Type:EcTInt
Privilege:Private

InBOBinMetadata - This is the object class constructor
Arguments:InBOBinStructure InBoBinput
Return Type:Void
Privilege:Public

4-14 305-CD-025-002

~InBOBinMetadata - This is the object class destructor
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InBOBinMetadata class has associations with the following classes:
None

4.3.10 InBOMetadata Class

Parent Class:InMetadata
Public:No
Distributed Object:No
Purpose and Description:
This class provides services to preprocess byte ordered data.

Attributes:

All Attributes inherited from parent class

Operations:

InBOMetadata - This is the constructor.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - Performs the data preprocessing (e.g., mandatory keywords check,
required files check
Arguments:void

~InBOMetadata - This is the destructor.
Arguments:
Return Type:Void
Privilege:Public

4-15 305-CD-025-002

Associations:

The InBOMetadata class has associations with the following classes:
None

4.3.11 InDAN Class

Parent Class:InMessage
Public:No
Distributed Object:No
Purpose and Description:
This is the DAN (Data Availability Notice) is received from the external Client. The object
class contains services to access information in the DAN.

Attributes:

myDANSeqNo - The identifier of the DAN data message.
Data Type:int
Privilege:Private
Default Value:

myDataProvider - Indicates who provides the data for ingest.
Data Type:char *
Privilege:Private
Default Value:

myDataTypeCount - Indicates the total number of data types in the DAN.
Data Type:int
Privilege:Private
Default Value:

myDataTypeList - This is a list that contains information about the file (e.g., file name,
size, location).
Data Type:struct**
Privilege:Private
Default Value:

4-16 305-CD-025-002

Operations:

Check - Verifies the integrity of the DAN components.
Arguments:char *DAAmsgPtr
Return Type:Void
Privilege:Public

CreateDANGranulefiles
Arguments:RWString &DANFile

FillDAN - Fills the DAN information into the class data memory after the DAN
information is parsed.
Arguments:int IngestType, char *ParsedKeywords[]
Return Type:Void
Privilege:Public

GenerateDAN - Generates a DAN file with file information retrieved from the given
directory location.
Arguments:char *Dir, char :*DataType, int DANSeqNo, char *DANFile
Return Type:int
Privilege:Public

ParsedPVL - Extracts information from the DAN and puts the information into a data
memory.
Arguments:char *PVLBuffer, int PVLLen
Return Type:Void
Privilege:Public

Associations:

The InDAN class has associations with the following classes:
Class: InRequest Defines

4.3.12 InDBAccess Class - This class provides services to access the Ingest data base

Parent Class:Not Applicable

4-17 305-CD-025-002

Attributes:

myCommandPtr - Database command pointer.
Data Type:CS_COMMAND*
Privilege:Private
Default Value:

myConnStatus - Connection status.
Data Type:InTDbConnStatus
Privilege:Private
Default Value:

myConnectionPtr - Database connection pointer.
Data Type:CS_CONNECTION*
Privilege:Private
Default Value:

ourContextPtr - Database context pointer.
Data Type:CS_CONTEXT*
Privilege:Private
Default Value:static

ourDBMutex - Database mutex.
Data Type:DCEPthreadMutex
Privilege:Private
Default Value:static

ourDatabase - Ingest database name.
Data Type:RWCString
Privilege:Private
Default Value:static

ourIFile - SYBASE interface file.
Data Type:RWCString
Privilege:Private
Default Value:static

ourPassword - SYBASE password.
Data Type:RWCString
Privilege:Private
Default Value:static

4-18 305-CD-025-002

ourSYBASEPath - SYBASE path.
Data Type:RWCString
Privilege:Private
Default Value:statis

ourServerName - SYBASE servername.
Data Type:RWCString
Privilege:Private
Default Value:static

ourUserName - SYBASE username.
Data Type:RWCString
Privilege:Private
Default Value:static

Operations:

DBConnect - Connect to the Ingest database.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

DBDisconnect - Disconnect from the Ingest database.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

DBExit - Exits all connections to the Ingest database.
Arguments:void
Return Type:static EcUtStatus
Privilege:Public

DBInit - Initialize STYBASE Client-Library.
Arguments:void
Return Type:statis EcUtStatus
Privilege:Public

ExecuteCmd - Execute SQL statement.
Arguments:RWCString
Return Type:EcUtStatus
Privilege:Public

4-19 305-CD-025-002

ExecuteStoredProc - Execute an SQL command to a call stored procedure which has no
output parameters.
Arguments:RWCString
Return Type:EcUtStatus
Privilege:Public

GetCmdPtr - Returns pointer to the command structure.
Arguments:void
Return Type:CS_COMMAND*
Privilege:Public

InDBAccess - Default constructor.
Arguments:void
Return Type:void
Privilege:Public

~InDBAccess - Destructor.
Arguments:void
Return Type:void
Privilege:Public

Associations:

The InDBAccess class has associations with the following classes:
None

4.3.13 InDataPreprocessList Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
The purpose of this class is to retain lists (of files). This class provides services to add files
to an existing list and retrieve files from an existing list.

4-20 305-CD-025-002

Attributes:

myCounter - This attribute is a local counter for the class.
Data Type:EcTInt
Privilege:Private
Default Value:

myFilename_vector - This attribute specifies the local Rogue Wave ordered vector.
Data Type:RWTPtrOrderedVector <InFile>
Privilege:Private
Default Value:

myListClass - This attribute identifies whether the list is an input list received from the
Request Processing CSC or is a list containing files to be inserted into the Data Server
Subsystem.
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

AddToList - This service provides the ability to add a file to an existing list.
Arguments:InFile* fileone
Return Type:EcTVoid
Privilege:Public

GetNext - This service provides the ability to retrieve the next file in the list.
Arguments:EcTVoid
Return Type:InFile
Privilege:Public

InDataPreprocessList - This is the constructor.
Arguments:EcTChar* lclass
Return Type:Void
Privilege:Public

~InDataPreprocessList - This is the destructor.
Arguments:EcTVoid
Return Type:Void
Privilege:Public

4-21 305-CD-025-002

Associations:

The InDataPreprocessList class has associations with the following classes:
Class: InDataPreprocessTask references
Class: InRequest submits - The InRequest class submits InDataPreprocessList in order to
identify the files which need to be preprocessed.

4.3.14 InDataPreprocessTask Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
The main purpose of this class is to initiate and monitor required data preprocessing before
insertion into the data server subsystem. The InRequest Class instantiates this class for each
separate preprocessing task. The InRequest class will supply an object ID for the input file
list (which contains the files associated with the preprocessing task). The
InDataPreprocessTask Class instantiates the InDataType Class. This class is responsible
for the control and reporting of its assigned preprocessing as directed by the InRequest
Class. It is also responsible for reporting the state of a particular preprocessing task
whenever the state changes. This object class also provides services to cancel, suspend, and
resume preprocessing tasks.

Attributes:

myDataType - The attribute specifies the data type (e.g. metadata, science) for the Data
Preprocess Task object.
Data Type:RWCString
Privilege:Private
Default Value:

myFileTypeArray - This attribute specifies the structure which stores constituent file type
information for a specific data type.
Data Type:RWTPtrOrdered Vector<RWCStirng>
Privilege:Private
Default Value:

4-22 305-CD-025-002

myInputList - This attribute references the input list which contains the files to be
preprocessed for the data preprocess task object.
Data Type:InDataPreprocessList*
Privilege:Private
Default Value:

myInsertionList - This attribute references the list which contains the processed files to be
inserted into the Data Server Subsystem.
Data Type:GlParameterList*
Privilege:Private
Default Value:

myStatus - This attribute specifies the status.
Data Type:EcTInt
Privilege:Private
Default Value:

myTimeInitiated - This attribute defines the initiation time of the Preprocessing Task.
Data Type:EcTFloat
Privilege:Private
Default Value:

Operations:

CleanUp - This service will remove all files associated with checkpoint working storage.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

InDataPreprocessTask
Arguments:RWCString DataType, InDataPreprocessList* InputList, GlParameterList**
Insertion List

Preprocess - This service provides the management of preprocessing of data with the
Preprocessing CSC. The service verifies the data type and it constituent file types; invokes
the correct preprocessing classes to extract metadata and reformat/convert science data; and
packages the modifies data for subsequent insertion into the Data Server Subsystem.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

4-23 305-CD-025-002

~InDataPreprocessTask - This is the destructor.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

Associations:

The InDataPreprocessTask class has associations with the following classes:
Class: InGranuleAsync_SB Invokes
Class: DsStagingDisk Uses
Class: DsGlParameter builds
Class: DsGlParameterList builds
Class: InFileTypeTemplate guides
Class: InRequest preprocesses
Class: InFile processes
Class: InDataPreprocessList references

4.3.15 InDataServerInsertionTask Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
Responsibles for the sending of request to the appropriate Data Server based on the data
type identifier. The object class has knowledge of the interface protocol with the Data
Server and interfaces with the Advertising Service of the Interoperability Subsystem to
determine the appropriate Data Server.

Attributes:

myDataServerUR - This is the Universal Reference of the Data Server to which the data
is to be inserted.
Data Type:EcTUR
Privilege:Private
Default Value:

4-24 305-CD-025-002

myDataType - This is the Universal Reference of the Data Server to which the data is to
be inserted.
Data Type:RWCString
Privilege:Private
Default Value:

myInsertionList - List of files to be inserted into Data Server.
Data Type:GlParameterList*
Privilege:Private
Default Value:

myStatus - Status of data insertion.
Data Type:EcTInt
Privilege:Private
Default Value:

Operations:

InDataServerInsertionTask - This is the object class constructor.
Arguments:RWCString DataType, DsGlParameterList* InsertionList
Return Type:EcTVoid
Privilege:Public

SendCancel - Sends insert cancellation request to the Data Server.
Arguments:EcTVoid
Return Type:EcTInt
Privilege:Public

SendInsert - Sends insert request to the Data Server.
Arguments:EcTVoid
Return Type:EcTInt
Privilege:Public

SendResumeB - Sends resume request to the Data Server.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

SendSetPriorityB - Sends set priority request to the Data Server.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

4-25 305-CD-025-002

SendSuspendB - Sends suspend request to the Data Server.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

UpdateStatus - Receives notification from Data Server when an insert request has
completed. Updates data base tables with completion information.
Arguments:EcTInt InsertStatus
Return Type:EcTInt
Privilege:Public

~InDataServerInsertionTask - This is the object class destructor.
Arguments:void
Return Type:Void
Privilege:Public

Associations:

The InDataServerInsertionTask class has associations with the following classes:
Class: InGranuleAsync_SB Invokes
Class: DsClRequest SendsArchivesRequestsTo
Class: InRequest SendsInsertRequestVia - The InRequest class SendsInsertRequestVia the
InDataServerInsertionTask class to initiate the process necessary to insert data into the
Data Server Subsystem.
Class: DsGlParameterList references

4.3.16 InDataTransferTask Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
It is responsible for coordinating the data transfer and the population of the
InTransferredData object class. In addition, the object class is responsible for attempting
the data transfer retries when data transmission failed.

4-26 305-CD-025-002

Attributes:

myCurrentState - Contains current state information. In particular set to
AllocatingResource, TransferringFiles, or Processing. Prior to setting to
AllocatingResource or TransferringFiles, the corresponding UR has been set so that calls
to Cancel or SetPriority can be processed.
Data Type:RWString
Privilege:
Default Value:

myResourceUR - Universal Reference of Resource Allocation Process. Used to Cancel or
set priority of resource allocation.
Data Type:EcTUR
Privilege:Private
Default Value:

myTotalDataVolume - The total data volume of ingest files transmitted.
Data Type:EcTInt
Privilege:Private
Default Value:

myTransferUR - Universal Referance of File Transer Processor
Data Type:EcTUR
Privilege:Private
Default Value:

Operations:

CancelResource - Sends cancel request to Data Server resource allocation software using
myResourceUR
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

CheckGranuleState - Checks granule change state. If set to suspended or cancelled, this
routine will update the Ingest data base plus set resulting action flag to indicate cancel
request.
Arguments:EctInt ResultingAction
Return Type:EcUtStatus
Privilege:Public

4-27 305-CD-025-002

GetDTInfo - Returns the Data Type information of the files to be transferred
Arguments:RWList FileInfo
Return Type:EcUtStatus
Privilege:Public

SetPriorityResourceB - Sends set priority command to Data Server Resource software
using myResourceUR.
Arguments:EcTInt Priority
Return Type:EcUtStatus
Privilege:Public

SetPriorityTransferB - Sends set priority command to Data Server Transfer software
using myTransferUR
Arguments:EcTInt Priority
Return Type:EcUtStatus
Privilege:Public

TransferDataGranule - Handles the transfer of all files in a granule. Update ingest data
base with transfer status of each file.
Arguments:RWlist FileInfo
Return Type:EcUtStatus
Privilege:Public

Associations:

The InDataTransferTask class has associations with the following classes:
Class: DsStResourceProvider GetNetworkResources
Class: DsStagingDisk GetStagingSpace
Class: InGranuleAsync_SB Invokes
Class: InRequestFileInfo ProvidesFileState

4-28 305-CD-025-002

4.3.17 InDataTypeTemplate Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
This class contains information that categorizes each ingest data type. The services
provided enable the InDataType Class to determine what the required file types are for a
given data type. The class will enable the addition of new ingest data types.

Attributes:

myDBAccess - The pointer to the DBAccess object class.
Data Type:InDBAccess*
Privilege:Private
Default Value:

ourDataTypeTemplateList - List of all the valid Data Types.
Data Type:RWTPtrOrderedVector<InTDbDataTypeTemplate
Privilege:Private
Default Value:static

ourInstance - Single instance of this object class.
Data Type:InDataTypeTemplate*
Privilege:Private
Default Value:static

Operations:

GetDSArchiveUR - GetDSArchiveUR for a particular DataType.
Arguments:const RWCString dataType, RWCString& DSArchiveUR
Return Type:EcUtStatus
Privilege:Public

GetDSResourceUR - GetDSResourceUR for a particular DataType.
Arguments:const RWCString dataType, RWCString& DSResourceUR
Return Type:EcUtStatus
Privilege:Public

4-29 305-CD-025-002

GetDataTypeInfo - Get URs for a particular DataType.
Arguments:const RWCString datatype, RWCString& DSArchiveUR, RWCString&
reqMgrUR, RWCString& DSResourceUR
Return Type:EcUtStatus
Privilege:Public

GetDataTypes - Retrieve all Ingest data types.
Arguments:RWTPtrOrderedVector<RWCString>& dataTypes
Return Type:EcUtStatus
Privilege:Public

GetReqMgrUR - Get ReqMgrUR for a particular DataType.
Arguments:const RWCString dataType, RWCString& reqMgrUR
Return Type:EcUtStatus
Privilege:Public

InDataTypeTemplate - This is the object class constuctor.
Arguments:InDBAccess* DBAccess
Return Type:Void
Privilege:Protected

Instance - Return the single instance of this class.
Arguments:InDBAccess* DBAccess, EcUtStatus&status
Return Type:static InDataTypeTemplate*
Privilege:Public

UpdateUR - Update a UR for a particular DataType. Phase 3 capability.
Arguments:const RWCString dataType, const RWCStringUR, const
InTBdURTypetypeOfUR
Return Type:EcUtStatus
Privilege:Public

~InDataTypeTemplate
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:

The InDataTypeTemplate class has associations with the following classes:
None

4-30 305-CD-025-002

4.3.18 InExternalDataProviderInfo Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Persistent thresholds on an External Data Provider basis for limits on Ingest request traffic,
data volumes, and data transfer retries.

Attributes:

myExternalDataProvider - Identifier of the external data provider (e.g., TSDIS) that
supplies ingest requests.
Data Type:RWString
Privilege:Private
Default Value:

myIngestMode - Indicates if the external data provider uses automatic network ingest,
polling files ingest, polling delivery record ingest, interactive ingest, or hard media ingest.
Data Type:RWString
Privilege:Private
Default Value:

myState - Current state of External Data Provider's request processing. Options include
active or suspended.
Data Type:RWString
Privilege:Private
Default Value:

Operations:

GetState - Returns the current state of the specified External Data Provider’s request
processing.
Arguments:RWString DataProviderID, RWString State
Return Type:EcUtStatus
Privilege:Public

InExternalDataProviderInfo - Constructor of the object class.
Arguments:EcTvoid
Return Type:Void
Privilege:Public

4-31 305-CD-025-002

UpdateState - Update state of External Data Provider's request processing. Options
include active or suspended.
Arguments:RWString State
Return Type:EcUtStatus
Privilege:Public

~InExternalDataProviderInfo - Destructor of the object class.
Arguments:EcTvoid
Return Type:Void
Privilege:Public

Associations:

The InExternalDataProviderInfo class has associations with the following classes:
None

4.3.19 InFDFData Class

Parent Class:InScienceData
Public:No
Distributed Object:No
Purpose and Description:
This class provides services to preprocess FDF data into acceptable data server format.

Attributes:

All Attributes inherited from parent class

Operations:

InFDFData - This is the constructor service.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - Performs data preprocessing on the corresponding data.
Arguments:EcTVoid
Return Type:EcTInt
Privilege:Public

4-32 305-CD-025-002

~InFDFData - This is the destructor.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InFDFData class has associations with the following classes:
None

4.3.20 InFile Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
Instantiates an ingested file on available storage space by collaborating with the
DsStResource object class services (described in the Data Server Subsystem section of this
document). The InFile object class also performs the file size and file existence checks.

Attributes:

myErrorStatus - Contains the status of the ingest file.
Data Type:int
Privilege:Private
Default Value:

myFileId - The unique identifier of the ingest file.
Data Type:char *
Privilege:Private
Default Value:

myFileLocation - Identifies the location the file resides.
Data Type:char *
Privilege:Private
Default Value:

4-33 305-CD-025-002

myFileType - Identifies the file type(e.g., metadata file, science data, calibration) of the
ingest file.
Data Type:char *
Privilege:Private
Default Value:

myFileVolume - The data volume of the ingest file.
Data Type:int
Privilege:Private
Default Value:

myNodeName - The host name where the file resides.
Data Type:char *
Privilege:Private
Default Value:

Operations:

GetErrorStatus - Returns the status of the ingest file.
Arguments:
Return Type:Void
Privilege:Public

GetFileId - Returns the file name of the ingest file.
Arguments:
Return Type:Void
Privilege:Public

GetFileLocation - Returns the file location of the ingest file.
Arguments:
Return Type:Void
Privilege:Public

GetFileType - Returns the file type (e.g., metadata file, science data, calibration data) of
the ingest file.
Arguments:
Return Type:Void
Privilege:Public

4-34 305-CD-025-002

GetFileVolume - Returns the size of the ingest file.
Arguments:
Return Type:Void
Privilege:Public

GetNodeName - Returns the host name of the ingest file.
Arguments:
Return Type:Void
Privilege:Public

Transfer - Initiates transfer of the ingest file.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InFile class has associations with the following classes:
Class: InDataPreprocessTask processes

4.3.21 InFileTypeTemplate Class

Parent Class:InDBAccess
Public:No
Distributed Object:Yes
Persistent Class:True
Purpose and Description:
This class is responsible for storing information that categorizes each ingest file type (e.g.
metadata vs science data). This information is used by the InDataType Class to create the
appropriate specializations of the InMetadata and InScienceData base classes. The class
will contain the necessary information on how to process each specific file type.

Attributes:

myCmd - This attribute specifies the Sybase command pointer.
Data Type:CS_COMMAND
Privilege:Private
Default Value:

4-35 305-CD-025-002

myCtr
Data Type:EcTInt
Privilege:Private
Default Value:

myDataType - This attribute specifies the data type (e.g. CER00, LIS00) for the file type
template object.
Data Type:RWCString*
Privilege:Private
Default Value:
Contraints:
Non Persisent Flag:False

myFTarray - This attribute specifies the structure which contains information on the
constituent file types of a specific data type.
Data Type:RWTPtrOrderedVector<RWCString>
Privilege:Private
Default Value:

myFileType - This attribute specifies the file type (e.g. metadata, science) of the file type
template object.
Data Type:RWCString
Privilege:Private
Default Value:
Contraints:
Non Persisent Flag:False

myFileTypeInfo - This attribute specifies the structure which contains information
pertaining to a specific file type.
Data Type:FileTypeInfo*
Privilege:Private
Default Value:

myFileanme_vector - This attribute specifies the ordered vector which contains a list of
file type structures.
Data Type:RWTPtrOrderedVector<FileTypeInfo>
Privilege:Private
Default Value:

myNumCols - This attribute specifies the number of columns in the result set.
Data Type:CS_INT
Privilege:Private
Default Value:

4-36 305-CD-025-002

myRetcode - This attribute specifies the sybase return code.
Data Type:CS_RETCODE
Privilege:Private
Default Value:

mySQLCmd - This attribute defines the SQL command pointer.
Data Type:RWCString*
Privilege:Private
Default Value:

Operations:

DeleteSession - Deletes file type information associated with the given session id.
Arguments:int SessionID

GetDTInfo - This service provides a list of the constituent file types for a specific data
type.
Arguments:RWTPtrOrderedVector<RWCString>** VecHolder
Return Type:EcUtStatus
Privilege:Public

GetFTInfo - This member function provides file type processing information for a specific
file type.
Arguments:RWCString FileType, FileTypeInfo* FTHolder
Return Type:EcUtStatus
Privilege:Public

InFileTypeTemplate - This is the constructor service.
Arguments:RWCString DataType
Return Type:void
Privilege:Public

SearchSession - Select file type information associated with the given session id.
Arguments:int SessionID

~InFileTypeTemplate - This is the destructor service.
Arguments:void
Return Type:void
Privilege:Public

4-37 305-CD-025-002

Associations:

The InFileTypeTemplate class has associations with the following classes:
Class: InDataPreprocessTask guides

4.3.22 InGRIBData Class

Parent Class:InScienceData
Public:No
Distributed Object:No
Purpose and Description:
This class will provide services to preprocess science data in GRIB format.

Attributes:

All Attributes inherited from parent class

Operations:

InGRIBData - This is the constructor service.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - This operation converts data in GRIB format to HDF format.
Arguments:
Return Type:EcUtStatus
Privilege:Public

~InGRIBdata - This is the destructor service.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InGRIBData class has associations with the following classes:
None

4-38 305-CD-025-002

4.3.23 InGUISession Class

Parent Class:EcPFManagedServer
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
Main for GUI task.

Attributes:

All Attributes inherited from parent class

Operations:

main - This is the main driver for the Ingest GUI.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InGUISession class has associations with the following classes:
Class: InIngestMainWindow

4.3.24 InGranuleAsync_CB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:

Handles all communication messages to and from InGranuleAsync_S object for a single
request granule.

Attributes:

None

4-39 305-CD-025-002

Operations:

CancelB - This routine overloads EcSrAsynchRequest_c::Cancel. It will send a message
to the InGranuleAysnc_S object to cancel remote processing.
Arguments:EcTvoid
Return Type:EcUtStatus
Privilege:Public

CompleteB - Overloads SRF complete. Deletes granule from RWlist GranuleList.
Arguments:EcTvoid
Return Type:EcUtStatus
Privilege:Public

InGranuleAsync_CB - Constructor. Constructed by InGranuleServer_S via SRF.
Arguments:InGranuleAsyncRequest_S &ctorMSG
Return Type:Void
Privilege:Public

SuspendB - Overloads SRF suspend. Since at the granule level a suspend and a resume
are handled the same, this function calls InGranuleAsync_C::Cancel.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

~InGranuleAsync_C
Arguments:EcTvoid
Return Type:Void
Privilege:Public

Associations:
The InGranuleAsync_CB class has associations with the following classes:
Class: InGranuleServer_SB Constructs
Class: InGranuleAsync_SB ExchangesStateMessages

4-40 305-CD-025-002

4.3.25 InGranuleAsync_SB Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
This is an object constructed by InGranuleServer_S to handle the processing and messages
for a single granule. Processing includes Granule file transfer, preprocessing and Data
Server insertion.

Attributes:

myClientUR - UR of corresponding client object.
Data Type:EctUR
Privilege:Private
Default Value:

myDanGranuleFileName - File name of DAN Granule File. The DAN granule file
contains DAN information for a single Granule
Data Type:RWString
Privilege:Private
Default Value:

myGranuleID - Granule ID of granule within the request. Used for data base access
Data Type:EctInt
Privilege:Private
Default Value:

myRequestID - Request ID used for order tracking and data base access purposes.
Data Type:EctInt
Privilege:Private
Default Value:

myResumeFlag - Flag indicating if the granule is being restarted for recovery or resume
purposes.
Data Type:EcTBoolean
Privilege:Private
Default Value:

4-41 305-CD-025-002

Operations:

Cancel - Based on current state of granule, sends cancel request on to Data Server resource
mananagement or data insertion software.
Arguments:EctInt RequestID, EctIntGranuleID
Return Type:EcUtStatus
Privilege:Public

CheckGranuleStateB - Called to check state attribute of object to determine if granule
processing has been suspended or cancelled.
Arguments:EcTInt RequestID, EcTInt GranuleED, EcTInt ResultingAction
Return Type:EcUtStatus
Privilege:Public

ExecuteB - Executed from SRF. Controls main granule processing including file transfer,
preprocessing and data insertion.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

InGranuleAsync_SB - This is the object class constructor.
Arguments:RWString &DANGranuleFileName, EcTBoolean ResumeFlag, EcTInt
RequestID, EcTInt GranuleID, InGranuleAsync_c* &async
Return Type:Void
Privilege:Public

SetPriority B - Sets the priority level for the corresponding granule.
Arguments:EctInt RequestID, EctIntGranuleID
Return Type:EcUtStatus
Privilege:Public

SuspendB - Based on current state of granule, sends suspend request onto either Data
Server Resource manager or Data Server Insert software.
Arguments:EctInt RequestID, EctIntGranuleID
Return Type:EcUtStatus
Privilege:Public

~InGranuleAsync_SB - This is the object class destructor.
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:
The InGranuleAsync_SB class has associations with the following classes:

4-42 305-CD-025-002

Class: InGranuleServer_SB Constructs
Class: InGranuleAsync_CB ExchangesStateMessages
Class: InDataPreprocessTask Invokes
Class: InDataServerInsertionTask Invokes
Class: InDataTransferTask Invokes

4.3.26 InGranuleMessageB Class - This class is the Ingest message class defining the granule
Sever_C to InGranuleServer_S via SRF.

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:

Attributes:

myMessageStringB - Message requesting remote granule processing
Data Type:EcsStreamable
Privilege:Private
Default Value:

Operations:

InGranuleMessageB
Arguments:RWString GranuleFileName, EcRequest OrderID, EcTBoolean ResumeFlag,
EcTInt RequestID, EctInt GranuleID

~InGranuleMessageB
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:
The InGranuleMessageB class has associations with the following classes:
Class: InGranuleServer_CB IsInvokedBy

4-43 305-CD-025-002

4.3.27 InGranuleServer_CB Class

Parent Class:Not Applicable

Attributes:

None

Operations:

InGranuleServer_CB
Arguments:EcTvoid
Return Type:Void
Privilege:Public

ProcessGranuleB - Starts the ingest processing for the corresponding granule.
Arguments:RWString &DANGranulefileName, EcTBoolean ResumeFlag, EcTint
RequestID, EcTint GranuleID

~InGranuleServer_CB
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:
The InGranuleServer_CB class has associations with the following classes:
Class: InRequest
Class: InGranuleServer_SB Invokes
Class: InGranuleMessageB IsInvokedBy

4.3.28 InGranuleServer_SB Class

Parent Class:EcPFManagedServer
Public:No
Distributed Object:Yes
Purpose and Description:

Remote granule server. This is a standalone executable that acts as an object factory. It
will run on any Data Server instance where granule processing will be performed. This is
an SRF Server.

4-44 305-CD-025-002

Attributes:

myClientURB - Universal Reference of corresponding granule server client
Data Type:EcTUR
Privilege:Private
Default Value:

myLocalServerB - The Universal Reference (UR) of the granule server.
Data Type:EcTUR
Privilege:Private
Default Value:

Operations:

InGranuleServer_SB
Arguments:EcURUr myUR, EcSrRequestDispatcher* localServer
Return Type:EcUtStatus
Privilege:Public

ProcessRequestB - Receives granule process requests from InGranuleServer_C.
Constructs local InGranuleAsync_S and remote InGranuleAsync_C objects to handle
actual granules processing and all subsequest granule traffic.
Arguments:RWString &DANGranuleFileName, EcTBolean ResumeFlag, EcTInt
RequestID, EcTInt GranuleID, InGranuleAsync-c* &async
Return Type:EcUtStatus
Privilege:Public

ReceiveMsgRAcceptanceB - Receives granule processing messages from
InGranuleServer_C. Message unpacking is handled by calling SRF functionality. Checks
message classID to verify it is a process granule message then calls ProcessGranule.
Arguments:EcCsMSG* newMessage, EcURUr* clientUR
Return Type:EcUtStatus
Privilege:Public

Associations:
The InGranuleServer_SB class has associations with the following classes:
Class: InGranuleAsync_CB Constructs
Class: InGranuleAsync_SB Constructs
Class: InGranuleServer_SB
Class: InGranuleServer_CB Invokes

4-45 305-CD-025-002

4.3.29 InHDFMetadata Class

Parent Class:InMetadata
Public:No
Distributed Object:No
Purpose and Description:
This class will provide services to preprocess HDF metadata.

Attributes:

All Attributes inherited from parent class

Operations:

InHDFMetadata - This is the constructor service.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - This operation will extract values from HDF input files. It will accesss the
correct MCFs and interact with the Metadata Toolkit to produce a modified metadata file
which is acceptable to the Data Server Subsystem.
Arguments:EcTVoid
Return Type:EcTInt
Privilege:Public

~InHDFMetadata - This is the destructor service.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InHDFMetadata class has associations with the following classes:
None

4-46 305-CD-025-002

4.3.30 InHistoryLog Class

Parent Class:InIngestMainWindow
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Contains ingest history information. The object class provides services retrieve ingest
events from the log.

Attributes:

All Attributes inherited from parent class

Operations:

ProcessRequest - Retrieves ingest events from the history log based on the user specified
criteria and displays the events to the user's screen.
Arguments:InTHLSearchCriteria SearchCriteria, EcTInt DetailLevel, EcTInt*
NumOfRows, RWCString HistLogFile
Return Type:EcUtStatus
Privilege:Public

ProcessRequest - Retrieves ingest events from the history log based on the user specified
Request ID and displays the events to the user's screen.
Arguments:EcTInt ReqID, EcTInt* NumOfRows, RWCString HistLogFile
Return Type:EcUtStatus
Privilege:Public

Associations:

The InHistoryLog class has associations with the following classes:
Class: InRequestSummaryData Accesses
Class: InRequestSummaryHeader Accesses

4-47 305-CD-025-002

4.3.31 InIngestMainWindow Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is the abstract parent object class from which all of the Ingest GUI object classes
inherits.

Attributes:

None

Operations:

CheckPrivileges - Verifies that the user has privilege to access the Ingest history log.
Arguments:RWString UserID
Return Type:EcTInt
Privilege:Public

ReceiveMsg - Reads the user spcified inputs from the screen.
Arguments:EcTVoid
Return Type:EcTInt
Privilege:Public

SendMsg - Displays message to the user's screen.
Arguments:EcTVoid
Return Type:EcTInt
Privilege:Public

Associations:

The InIngestMainWindow class has associations with the following classes:
Class: InGUISession

4-48 305-CD-025-002

4.3.32 InInteractiveIngestB Class

Parent Class:EcPFManagedServer
Public:No
Distributed Object:No
Purpose and Description:

Attributes:

myDANIDB - ID of Dan file created or supplied to Interactive Ingest.
Data Type:RWString
Privilege:Private
Default Value:

myUserNameB - Interactive user name. Used to access user's profile to locate local
diretories and retrieve Email address.
Data Type:RWString
Privilege:Private
Default Value:

Operations:

BuildDANB - Builds DAN file from aruements, stores DAN in ECS controlled User area.
Returns status.
Arguments:RWList FileList, RWList DataType, RWList DANHeader
Return Type:EcUtStatus
Privilege:Public

DetermineFileSizeB - Uses UNIX system services to determine file size of local to ECS
files.
Arguments:RWString FileName, RWString FileLocation
Return Type:EcUtStatus
Privilege:Public

ExecuteScriptB - Script main driver.
Arguments:EcTVoid
Return Type:EctVoid
Privilege:Public

4-49 305-CD-025-002

GetDANHeaderB - Process DAN header information supplied via HTML on the
DANHeaderForm
Arguments:RWList HeaderInformation
Return Type:EcUtStatus
Privilege:Public

GetDataTypeInformationB - Processes data type information supplied via HTML from
the DataTypeInformationForm.
Arguments:RWList DataTypeInformation
Return Type:EcUtStatus
Privilege:Public

ProcessDANIngestB - Process DAN file name submitted by user via HTML
DANIngestForm. Calls InDAN to construct DAN object. Call InDAN::Checkpoint to
checkpoint DAN information in Ingest data base. Sends request to InRequestManage for
processing.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

ProcessDirSpecMultiDANB - Drives the processing of a single directory containing
multiple granules where each granule is distinguished by having the same base file name.
Creates a list of files, partitions into granules, gets data type and file type, builds DAN and
sends DAN to InRequestManager for processing.
Arguments:RWString DirectoryName, RWString DataType, RWList DANHeader
Return Type:EcUtStatus
Privilege:Public

ProcessDirSpecSingleDANB - Using UNIX system calls, determines the file content of a
single directory. Displays, via HTML RetrieveFileTypes Form, the name of each file in
the directory. The form indicates that the user should fill in File Type for each File
displayed. Calls BuildDan operation and sends request to InRequestManage.
Arguments:RWString DirectoryName, RWString DataType, RWList DANHeader
Return Type:EcUtStatus
Privilege:Public

ProcessInteractiveDANSpecB - Controls the forms session with the user to interactively
build a DAN request.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

4-50 305-CD-025-002

ProcessUserNameB - Creates User Profile object. Returns error status if user can not be
located in User Profile.
Arguments:RWString UserName, EcUserProfile& theUser
Return Type:EcUtStatus
Privilege:Public

WriteDANGroupB - Called by InBuildDAN. Writes DAN file group information in PVL
format.
Arguments:RWList FileList, RWList DataType
Return Type:EcUtStatus
Privilege:Public

WriteDANHeaderB - Write DAN header information to DAN file in PVL format.
Arguments:RWList HeaderList
Return Type:EcUtStatus
Privilege:Public

Associations:
The InInteractiveIngestB class has associations with the following classes:
Class: InRequestManager_C SendsRequestTo
Class: InRequestManager_S SendsRequestTo

4.3.33 InLongDAA Class

Parent Class:InMessage
Public:No
Distributed Object:No
Purpose and Description:
This object class populates the long DAA (DAN Acknowledgement) data message to be
sent to the external Client after the receipt of the DAN.

Attributes:

myLongDAA - This is the DAN Acknowledgement data message in detailed format.
Data Type:LongDAAmsg
Privilege:Private
Default Value:

4-51 305-CD-025-002

Operations:

FillDAA - This function will package a long DAA message for the DAN
acknowledgement.
Arguments:int Status[],char *DataType[],char *Descriptor, int FileGroupCount, int
DANSeqNo
Return Type:Void
Privilege:Public

Associations:

The InLongDAA class has associations with the following classes:
None

4.3.34 InLongDDN Class

Parent Class:InMessage
Public:No
Distributed Object:No
Purpose and Description:
This object class populates the long DDN (Data Delivery Notice) data message to be sent
to the external Client after the data is archived.

Attributes:

myLongDDN - This is the long DDN (Data Delivery Notice) data message.
Data Type:LongDDNmsg
Privilege:Private
Default Value:

Operations:

FillDDN - Packages the DDN data message with given inputs.
Arguments:int Status[], char *Direcotry, char *FileId, int FileCount, int DANSeqNo
Return Type:Void
Privilege:Public

4-52 305-CD-025-002

Associations:

The InLongDDN class has associations with the following classes:
Class: InRequest builds

4.3.35 InMediaIngest Class

Parent Class:InIngestMainWindow
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
Provides operations personnel the capability to perform physical media ingest via the GUI
interface. The is a derived object class from the InGUISession object class. It inherits all
data and service members provided by the InGUISession.

Attributes:

myUserName - The user name of the operator requesting the Media Ingest service.
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

AllocDevice - Allocates for an available specified peripheral device.
Arguments:EcTInt MediaType
Return Type:EcUtStatus
Privilege:Public

AllocStDisk - Allocates for an available staging disk.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

CheckPrivilege - Verifies that the operator and the media provider has ingest privilege.
Arguments:char *UserName
Return Type:int
Privilege:Public

4-53 305-CD-025-002

Copy - Down-loads data from tape to staging.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

DeallocDevice - Deallocates the peripheral device.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

DeallocStDisk - Deallocates the staging disk.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

DismountMedia - Dismount the tape.
Arguments:void
Return Type:EcUtStatus
Privilege:Public

GetBarCodeB - Retrieves the bar code information from the media tape.
Arguments:RWString BarCode
Return Type:Void
Privilege:Public

GetDDRFile - Retrieves the Data Delivery Record (DDR) file from the tape.
Arguments:EcTInt DDRLocation, EcTInt MediaType, RWCString DDRFileName
Return Type:EcUtStatus
Privilege:Public

InsertRequestB - Performs the Data Delivery Record file validation and inserts the
information into the Data Base.
Arguments:EcTInt* ReqID
Return Type:EcUtStatus
Privilege:Public

MountMedia - Mounts the tape.
Arguments:RWCString MediaVolID
Return Type:EcUtStatus
Privilege:Public

ProcessRequest - Submits the request to the Ingest Request Manager for ingest processing.
Arguments:void
Return Type:Void
Privilege:Public

4-54 305-CD-025-002

ProcessRequestB - Submits the request to the Ingest Request Manager for ingest
processing.
Arguments:EcTInt ReqID
Return Type:EcUtStatus
Privilege:Public

Associations:

The InMediaIngest class has associations with the following classes:
Class: InRequestManager_S SendsReqeustTo
Class: DsStResourceProvider uses

4.3.36 InMessage Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Contains data messages that interchanges between the external Client and ECS/Ingest.

Attributes:

None

Operations:

GetMsgLength - Extracts and returns the message type from the data message.
Arguments:char *MsgPtr
Return Type:Void
Privilege:Public

InMessage - This is the constructor for the InMessage object class.
Arguments:
Return Type:Void
Privilege:Public

4-55 305-CD-025-002

Associations:

The InMessage class has associations with the following classes:
Class: InSession Receives/Sends - The InSession object interfaces with the InMessage
object to access data messages that are interchanged between Ingest and the external Client.

4.3.37 InMetadata Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an abstract class.

Attributes:

myFileTypeRow - This attribute a structure which contains preprocessing profile
information for a specific data type/file type.
Data Type:FileTypeInfo*
Privilege:Private
Default Value:

myInputFile - This attribute references the raw metadata input file.
Data Type:RWCString
Privilege:Private
Default Value:

myTargetMCF - This attribute references the target MCF obtain from the Data Server
Subsystem.
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

Preprocess - This is a pure virtual member function.
Arguments:Abstract
Return Type:Void
Privilege:Public

4-56 305-CD-025-002

Associations:

The InMetadata class has associations with the following classes:
Class: InSourceMCF defines - The InSourceMCF class defines the InMetadata class by
providing format informatin on input metadata files.
Class: DsCIDescriptor guides - The DsCIDescriptor class guides the InMetadata class by
providing services to access target MCFs and validate metadata files.
InDataPreprocessTask (Aggregation)

4.3.38 InNextAvailableID Class

Parent Class:InDBAccess

Attributes:

myDBAccess - The pointer to the instance of the InDBAccess class used to connect to the
database.
Data Type:InDBAccess*
Privilege:Private
Default Value:

myRequestID - The next available RequestID.
Data Type:int
Privilege:Private
Default Value:

Operations:

GetNewReqID - Get a new RequestID.
Arguments:int&
Return Type:EcUtStatus
Privilege:Public

GetReqID - Return the RequestID.
Arguments:void
Return Type:int
Privilege:Public

4-57 305-CD-025-002

InNextAvailableID - Alternate constructor.
Arguments:InDBAccess*
Return Type:Void
Privilege:Public

~InNextAvailableID - Destructor.
Arguments:void
Return Type:Void
Privilege:Public

Associations:

The InNextAvailableID class has associations with the following classes:
None

4.3.39 InPVMetadata Class

Parent Class:InMetadata
Public:No
Distributed Object:No
Purpose and Description:
This class will provides services to preprocess Parameter-Value metadata.

Attributes:

myLineDelimiter - This attribute will define the symbol used to indicate the end of a
parameter-value metadata statement.
Data Type:RWCString
Privilege:Private
Default Value:

myParameterDelimiter - This attribute will define the symbol used to delimit the
parameter portion of a parameter-value metadata statement.
Data Type:RWCString
Privilege:Private
Default Value:

4-58 305-CD-025-002

mySeparator - This attribute will define the symbol used to separate the parameter from
the value in the parameter-value metadata statement
Data Type:RWCString
Privilege:Private
Default Value:

myValueDelimiter - This attribute will define the symbol used to delimit the value part of
a parameter-value metadata statement.
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

InPVMetadata - This is the constructor service.
Arguments:

Preprocess - This operation will extract values from input parameter-value files based on
delimiters and parameter names. It will access the correct MCFs and interact with the
InMetadata_Tool Class to produce a metadata file which is acceptable to the data server
subsystem.
Arguments:
Return Type:EcTInt
Privilege:Public

~InPVMetadata
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InPVMetadata class has associations with the following classes:
None

4-59 305-CD-025-002

4.3.40 InPollingIngestSession Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
This object class does not have any control link with the external interface (i.e, no physical
stimulus provided from external source). It is a persistent object class which is configured
to wake up at a tunable period of time to detect existence of ingest files at a designated
location; the location could either be external or local in ECS. If files are detected, the
object class will instantiate the InPollingIngestRequest object class and add it to the
InRequestList to be processed. The InPollingIngestSession object class is derived from the
InSession. It inherits all the data and service members provided by the InSession object
class.

Attributes:

mtDataTypeList - List of Data Types associated with files to be ingested.
Data Type:char**
Privilege:Private
Default Value:

myDataProvider - Indicates the data provider of the files to be polled.
Data Type:char*
Privilege:Private
Default Value:

myDataTypeCount - Specifies the number of data types associated with data files.
Data Type:int
Privilege:Private
Default Value:

myExprDate - Indicates how long the data will remain available.
Data Type:char*
Privilege:Private
Default Value:

myFtpFileList - List of files (old and new) in the currently polling directory.
Data Type:InTPoList*
Privilege:Private
Default Value:

4-60 305-CD-025-002

myHostNameList - List of host names corresponding to the data types to be polled.
Data Type:char**
Privilege:Private
Default Value:

myOldFiles - List of file names that contains the names of the previously ingested files.
Data Type:char*
Privilege:Private
Default Value:

myPollingTimer - The time period which indicates how often the Polling Ingest Session
should check for the existence of ingest files for ingest processing.
Data Type:int
Privilege:Private
Default Value:

mySourceDirectoryList - List of source directories where the files are to be ingested.
Data Type:char*
Privilege:Private
Default Value:

Operations:

CheckFiles - Detects for new files from the specified directory
Arguments:char *HostName, char *Dir, InTPoList **NewFileList, int *NewFileCount
Return Type:int
Privilege:Public

CleanupDirectory - Performs the cleanup processing after the ingest is complete
Arguments:InTDataTypeList *DTList, int DTCount
Return Type:int
Privilege:Public

DeleteItem - Deletes an item from the linked list.
Arguments:InTPoList** List, char *Data
Return Type:void
Privilege:Private

DeleteList - Destroys the linked list.
Arguments:InTPoList** List
Return Type:void
Privilege:Private

4-61 305-CD-025-002

DeliverResponse - Generates the ingest response pertaining to the ingest polling process
in a file.
Arguments:char *ResponseFile
Return Type:int
Privilege:Public

InPollingIngestSession
Arguments:int argc, char **argv, int status
Return Type:Void
Privilege:Public

InitList - Initializes the linked list.
Arguments:InTPoList**
Return Type:void
Privilege:Private

InsertList - Inserts an item into the linked list.
Arguments:InTPoList** List, char *Data
Return Type:void
Privilege:Private

IsFileNew - This function will determine if the specified file is a new file by checking the
file against the names of previously ingested files.
Arguments:char *FileName
Return Type:int
Privilege:Public

IsItemInList - Searches for an item in the linked list.
Arguments:InTPoList** List, char *Data
Return Type:int
Privilege:Private

ProcessRequest - Creates a new Ingest request using the Delivery Record file as input and
adds the request to the In Request List for processing.
Arguments:char * DANFile
Return Type:int
Privilege:Public

ProcessRequest - Begins the ingest processing. The processing includes data transfer, data
preprocessing, and Data Server insertion.
Arguments:InTDataTypeList *DTList, int DTCount
Return Type:int
Privilege:Public

4-62 305-CD-025-002

Associations:

The InPollingIngestSession class has associations with the following classes:
Class: EcPFManagedServer
Class: InRequestManager_C SendsRequestTo

4.3.41 InPollingThreshold Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
This is a persistant object class that defines thresholds for the Ingest Polling Interface.

Attributes:

None

Operations:

GetPollingThresholds
Arguments:char* ExternalDataProviders, int PollingTimers, int rowcount

Associations:

The InPollingThreshold class has associations with the following classes:
Class: InRequestManager accesses

4.3.42 InReformatData Class

Parent Class:InScienceData
Public:No
Distributed Object:No
Purpose and Description:
This class provides services to preprocess data which is not in an ECS compatible format.

4-63 305-CD-025-002

Attributes:

All Attributes inherited from parent class

Operations:

InReformatData - This is the constructor service.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - This operation will reformat input science data files which are not in an
acceptable ECS data format. The reformatting includes byte swapping and other functions
to resolve platform incompatibilities.
Arguments:
Return Type:EcTInt
Privilege:Public

~InReformatData
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InReformatData class has associations with the following classes:
None

4.3.43 InRequest Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
Contains information provided by a requestor/external interface requesting ingest of data.
The object class has the responsibility to perform basic request component checking and to
assign a unique identifier for the new ingest request.

4-64 305-CD-025-002

Attributes:

myAggregateLength - Total volume of data (in bytes) to be ingested based on the given
request.
Data Type:int
Privilege:Private
Default Value:

myDataTypeIdList - The set of data types associate with the ingest granules.
Data Type:struct **
Privilege:Private
Default Value:

myExpirationDateTime - Date/time by which the corresponding ingest request must be
completed (i.e., archive insertion complete and response returned to the external data
provider).
Data Type:char*
Privilege:Private
Default Value:

myExternalDataProvider - Identifier of the external data source providing data to be
ingested into ECS.
Data Type:char*
Privilege:Private
Default Value:

myIngestType - The type of data ingest to be performed (e.g., media ingest, network
ingest).
Data Type:char*
Privilege:Private
Default Value:

myProcessingEndDateTime - Ending date/time (in standard ECS date/time format) at
which the ingest request processing completed (the time immediately prior to deleting the
object in the destructor service).
Data Type:DateTime
Privilege:Private
Default Value:

myProcessingStartDateTime - Starting date/time (in standard ECS time format) at which
ingest processing began (time of creation of the InRequest object).
Data Type:DateTime
Privilege:Private
Default Value:

4-65 305-CD-025-002

myRequestId - The information that uniquely identifies an Ingest Request. Request
Identifiers are referenced by Status Requests and other Service Requests that are used to
monitor or control the execution of Ingest Requests.
Data Type:int
Privilege:Private
Default Value:

myRequestPriority - The information that determines the order in which an ingest request
will be processed relative to other ingest requests waiting to be processed. The priority is
provided by the InExternalDataProvider object class for each external data provider.
Data Type:int
Privilege:Private
Default Value:

myRequestState - State of the corresponding ingest request. Values are "Active" and
"Complete".
Data Type:char*
Privilege:Private
Default Value:

mySequenceId - The SequenceId identifies each of the control messages for a given
request. The sequence number is first extracted from the DAN, then all the control
messages (e.g, DAA,DRA,DRR...) need to contain the same sequence number for a given
request.
Data Type:int
Privilege:Private
Default Value:

mySessionId - The identifier of the session associated with the ingest request.
Data Type:int
Privilege:Private
Default Value:

myStateChange - Defines the control state to which the requirement is to be updated
Data Type:RWString
Privilege:Private
Default Value:

myTotalFileCount - Total number of files identified for ingest in the request.
Data Type:int
Privilege:Private
Default Value:

4-66 305-CD-025-002

Operations:

Cancel - Cancels an ingest request.
Arguments:void
Return Type:int
Privilege:Public

CancelB - Calls NotifyRemoteGranules to notify all remotely processing granules that the
request is being cancelled.
Arguments:RWString ResultingAction
Return Type:EcUtStatus
Privilege:Public

ChangeState - Updates the state of an ingest request.
Arguments:String *NewState
Return Type:int
Privilege:Private

CheckPointRequest - Check points the request to the data base.
Arguments:void
Return Type:int
Privilege:Public

CheckRequestStateB - Checks request object attribute myRequestState to determine if
request should be cancelled, suspended, resumed, or recovered.
Arguments:EcTInt *GranuleID, EcTInt ResultingAction
Return Type:EcUtStatus
Privilege:Public

CheckVolumeThresholdB - Checks current volume limits for the request to determine if
the next granule can be sent to the granule server for processing
Arguments:EctInt GranuleID, RWString ResultingAction
Return Type:EcUtStatus
Privilege:Public

DeleteInteractiveIngest - Handles all clean up necessary for Interactive Ingest Requests.
Includes the sending of EMail to the interactive user and the creation of a HTML formatted
DDN message.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

DeletePollingSession - Handles all clean up necessary for Polling Ingest requests.
Arguments:EcTVoid

4-67 305-CD-025-002

Return Type:EcUtStatus
Privilege:Public

DeleteSession - Handles all delete functionality necessary for automated network Ingest
requests.
Arguments:EcTVoid
Return Type:EcUtStatus
Privilege:Public

FillData - Puts request related information into the DAN object class.
Arguments:InDAN *DAN, int *SessionID
Return Type:EcUtStatus
Privilege:Public

GetGranuleServerURB - Accesses InDataType Template to get UR for the Ingest
Granule Server which will handle the request granule.
Arguments:EcUR &InGranuleServer, RWString& GranuleDataType
Return Type:EcUtStatus
Privilege:Public

GetRequestId - Assigns an unique identifier for the ingest request.
Arguments:void
Return Type:int
Privilege:Private

GetSessionId - Returns the identifier of the Session that the ingest request is running.
Arguments:void
Return Type:int
Privilege:Public

GetState - Returns the state of the corresponding request is in.
Arguments:void
Return Type:char*
Privilege:Private

InRequest - Constructor, when a DAN file is supplied.
Arguments:char* DANfile
Return Type:int
Privilege:Public

InRequest - Constructor, when a DAN message is supplied.
Arguments:DANmsg *DANmsgPtr
Return Type:int
Privilege:Public

4-68 305-CD-025-002

NotifyRemoteGranuleB - Loops over all granules in the RW granule list. Calls
InGranuleAsync_C to pass on request state change to remotely processing granules.
Arguments:EctInt MsgType
Return Type:EcUtStatus
Privilege:Public

ProcessRequestB - Main driver for request processing. Processes DAN to get list of
Granules. Then for every granule in DAN, it checks current Volume thresholds to
determine if the granule can be processed or held. Once processing is allowed, the granule
request is sent on to the appropriate InGranuleServer_C. Once all granules have completed
processing, the request delete function is called.
Arguments:EctVoid
Return Type:EcUtStatus
Privilege:Public

RecoverB - Checks InRequestProcessData data base table to determine if the request
granule was completed prior to warm restart.
Arguments:EcTInt GranuleID, RWString ResultingAction
Return Type:EcUtStatus
Privilege:Public

ResumeB - Checks InRequestProcessDAta data base table to determines if the granule was
completed prior to the suspend request.
Arguments:EcTInt GranuleID, EcTInt ResultingAction
Return Type:EcUtStatus
Privilege:Public

SetPriorityB - Call NotifyRemoteGranules to let all remotely processing granules know
that the request priority should be modified.
Arguments:RWString ResultingAction
Return Type:EcUtStatus
Privilege:Public

SuspendB - Calls NotifyRemoteGranule operation to notify all remotely processing
granules that the request is suspending
Arguments:RWString ResultingAction
Return Type:EcUtStatus
Privilege:Public

4-69 305-CD-025-002

Associations:

The InRequest class has associations with the following classes:
Class: InRequestManager_S Creates
Class: InDAN Defines
Class: InGranuleServer_CB
Class: InRequestProcessData IsStoredIn
Class: InRequestManager Manages
Class: InDataServerInsertionTask SendsInsertRequestVia - The InRequest class
SendsInsertRequestVia the InDataServerInsertionTask class to initiate the process
necessary to insert data into the Data Server Subsystem.
Class: InLongDDN builds
Class: InShortDDN builds
Class: InRequestProcessHeader isStoredIn
Class: InDataPreprocessTask preprocesses
Class: InDataPreprocessList submits - The InRequest class submits InDataPreprocessList
in order to identify the files which need to be preprocessed.

4.3.44 InRequestController Class

Parent Class:InIngestMainWindow
Public:No
Distributed Object:No
Persistent Class:
Purpose and Description:
 Provides authorized operations personnel the capability to udpate an ongoing ingest
request via the GUI interface. The operations personnel could 1) cancel an ingest request,
2) suspend an ingest request, 3) resume an ingest request, or 4) change priority of an ingest
request. This is a derived object class from the InGUISession object class. It inherits all
the data and services provided by the InGUISession object class.

Attributes:

myRequestId - The identifier of the ingest request that is to be updated (e.g., cancel,
suspend, resume, change priority).
Data Type:int
Privilege:Private
Default Value:

4-70 305-CD-025-002

myUpdateType - Identifies the type of update to be performed on an ingest request. The
types of ingest request updates consist of: cancel, suspend, resume, and change priority.
Data Type:int
Privilege:Private
Default Value:

Operations:

CreateRequestListB - Searches and returns requests to satisfy the user specified criteria.
Arguments:RWString ControlCommand, RWList ReqeustList
Return Type:Void
Privilege:Public

ProcessRequest - Performs the appropriate update service (e.g., cancel, suspend, resume)
on the user specified Request ID.
Arguments:EcTInt RequestID, EcTInt ControlType, EcTInt ControlData
Return Type:EcUtStatus
Privilege:Public

ProcessRequestStateChangeB - Performs the appropriate control service (e.g., cancel,
suspend, resume) based on the user specified information.
Arguments:EcTIntRequestID, RWString StateControlCommand
Return Type:Void
Privilege:Public

ProcessSearch - Searches for the request(s) from the data base based on the user specified
criteria and displays the retrieved information to the screen.
Arguments:EcTInt SearchType, RWCString SearchValue, EcTInt DetailLevel, EcTInt*
NumOfRows, RWCString ReqInfoFile
Return Type:EcUtStatus
Privilege:Public

ProcessSearch - Searches for the user specified request from the data base and displays the
request information to the screen.
Arguments:EcTInt RequestID, EcTInt* NumOfRows, RWCString ReqInfoFile
Return Type:EcUtStatus
Privilege:Public

ProcessStatusMonitorRequest - Invokes appropriate services to perform the update
service on the specified ingest request. This service overloads the ProcessRequest() service
defined the InGUISession object class.
Arguments:int RequestId, int UpdateType

4-71 305-CD-025-002

Return Type:Void
Privilege:Public

Associations:

The InRequestController class has associations with the following classes:
Class: InRequestProcessHeader Access
Class: InRequestProcessData Accesses
Class: InRequestManager_C SendsControlRequestsTo

4.3.45 InRequestFileInfo Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Provides checkpoint storage of file information associated with a given data granule in a
given ingest request. In the event of request completion, this item is deleted.

Attributes:

myDBAccess - The pointer to the instance of the InDBAccess class used to connect to the
database.
Data Type:InDBAccess*
Privilege:Private
Default Value:

Operations:

GetRequestData - Select the RequestFileInfo information for a given RequestID.
Arguments:const EcTInt requestID,
RWTPtrOrderedVector<InTDbReqFileInfo>&fileInfo
Return Type:EcUtStatus
Privilege:Public

InRequestFileInfo
Arguments:InDBAccess* DBAccess
Return Type:Void

4-72 305-CD-025-002

Privilege:Public

Insert - Insert a new record into the RequestFileInfo table.
Arguments:const EcTInt requestID, EcTInt dataGranID, RWCString fileID, RWCString
sourceDirID, RWCString targetDirID, EcTInt fileSize, EcTInt recordSize, RWTime
beginDateTime
Return Type:EcUtStatus
Privilege:Public

UpdateFileState - Update the FileState field for a given file. Phase 3 capability.
Arguments:const EcTInt requestID, const EcTInt dataGranuleID, const RWCString fileID,
const RWCString fileState
Return Type:EcUtStatus
Privilege:Public

UpdateFileStatus - Update the file status field for a given file.
Arguments:const EcTInt RequestID, const EcTInt DataGranuleID, const RWCString
fileID, const EcTInt fileStatus
Return Type: EcUtStatus
Privilege:Public

UpdateFileStatus - Update the FileStatus field for a given RequestID and a GranuleID.
Arguments:const EcTInt requestID, const EcTInt dataGranuleID, const EcTInt fileStatus
Return Type:EcUtStatus
Privilege:Public

~InRequestFileInfo
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:

The InRequestFileInfo class has associations with the following classes:
Class: InRequestProcessData
Class: InDataTransferTask ProvidesFileState

4.3.46 InRequestManager Class

Parent Class:EcPFManagedServer
Public:No

4-73 305-CD-025-002

Distributed Object:No
Persistent Class:
Purpose and Description:
This is a focal object class of the Ingest CI. It coordinates the ingest processing which
includes the initiating of the data transfer and the sending of data insertion request to the
appropriate Data Server. The object class also tracks and allows updates the ingest
thresholds.

Attributes:

myCurrentDataVolumeKeep - Current running total of data volume in active ingest
request. Incremented as new InRequest objects are created; decremented when InRequest
objects are deleted.
Data Type:int
Privilege:Private
Default Value:

myCurrentRequestMutex - Mutex to control the Request access.
Data Type:DCEPthreadMutex
Privilege:Private
Default Value:

myCurrentRequests - Keeps a running total of the number of requests currently in the
system. Incremented as new InRequest objects are created; decremented when InRequest
objects are deleted.
Data Type:int
Privilege:Private
Default Value:

myDataVolumeThreshold - This is the system data volume allowed to be processed
concurrently.
Data Type:int
Privilege:Private
Default Value:

myRequestThreshold - The maximum number of requests allowed to be processed
concurrently.
Data Type:int
Privilege:Private
Default Value:

4-74 305-CD-025-002

Operations:

CreateRequest - Creates a new InRequest object in a pthead when a DAN file pointer is
provided.
Arguments:char* DANfile
Return Type:DCEObjRefT*
Privilege:Public

CreateRequest - Creates a new InRequest object in a pthread when a DAN message
pointer is provided.
Arguments:DANmsg* DANmsgPtr
Return Type:DCEObjRefT*
Privilege:Public

CreateRequest - Creates a new InRequest object in a pthead when a DAN file pointer is
provided.
Arguments:char* DANfile
Return Type:DCEObjRefT*
Privilege:Public

CreateRequest - Creates a new InRequest object in a pthread when a DAN message
pointer is provided.
Arguments:DANmsg* DANmsgPtr
Return Type:DCEObjRefT*
Privilege:Public

DeleteRequest - Deletes the request from InRequestProcess* tables.
Arguments:int RequestId
Return Type:int
Privilege:Public

DeleteRequestRPC - This RPC invokes the DeleteRequest() service to perform request
deletion.
Arguments:int RequestId
Return Type:int
Privilege:Public

GetCurrentDataVolume - Gets the value of the current data volume.
Arguments:void
Return Type:int
Privilege:Public

GetCurrentRequests - Gets the value of the current total number of ingest requests in the
system.

4-75 305-CD-025-002

Arguments:void
Return Type:int
Privilege:Public

ProcRequest - This service is invoked as a thread spawned by CreateRequestRPC().
Arguments:pthread_addr_t arg
Return Type:pthread_addr_t
Privilege:Private

ProcessStateChangeB - Requests cancellation, suspension, resumption, and set priority
of an existing InRequest object. The InRequest CancelRequest service is invoked. The
success of the cancellation request depends on the state of the ongoing request.
Arguments:DCEObjRefT* ObjReference
Return Type:int
Privilege:Public

RestoreRequestList - Recovers the InRequestList object after a process or system failure.
Arguments:void
Return Type:int
Privilege:Private

UpdateCurrentDataVolume - Updates the value of the current running total of data
volume requested to be ingested.
Arguments:int UpdateValue
Return Type:int
Privilege:Private

UpdateCurrentRequests - Updates the current running total for number of ingest requests
in the system.
Arguments:int UpdateValue
Return Type:int
Privilege:Private

Associations:

The InRequestManager class has associations with the following classes:
Class: InRequest Manages
Class: InExternalDataProviderThreshold accesses
Class: InPollingThreshold accesses

4-76 305-CD-025-002

4.3.47 InRequestManager_C Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
The client implementation of the distributed InRequestManager object. This client acts as
the intermediary to the object factory (InRequestManager_S).

Attributes:

None

Operations:

CreateRequest - Service to create an InRequest object via a distributed object factory
(InRequestManager_S) when a DAN message is supplied.
Arguments:DANmsg* DANmsgPtr
Return Type:int
Privilege:Public

CreateRequest - Service to create an InRequest object via a distributed object factory
(InRequestManager_S) when a DAN file is supplied.
Arguments:char* DANfile
Return Type:int
Privilege:Public

CreateRequest - Service to create an InRequest object via a distributed object factory
(InRequestManager_S) when a DAN message is supplied.
Arguments:DANmsg* DANmsgPtr
Return Type:int
Privilege:Public

CreateRequest - Service to create an InRequest object via a distributed object factory
(InRequestManager_S) when a DAN file is supplied.
Arguments:char* DANfile
Return Type:int
Privilege:Public

4-77 305-CD-025-002

Associations:

The InRequestManager_C class has associations with the following classes:
Class: InSession Invokes
Class: InSession ReceivesRequestFrom
Class: InRequestController SendsControlRequestsTo
Class: InInteractiveIngestB SendsRequestTo
Class: InPollingIngestSession SendsRequestTo
Class: InSession SendsRequestTo
InRequestManager (Aggregation)

4.3.48 InRequestManager_S Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
Implementation of the server (object factory) for InRequestManager.

Attributes:

None

Operations:

CreateRequest - Service to create an InRequest_S object when a DAN message is
supplied.
Arguments:DANmsg* DANmsgPtr
Return Type:int
Privilege:Public

CreateRequest - Service to create an InRequest_S object when a DAN file is supplied.
Arguments:char* DANfile
Return Type:int
Privilege:Public

4-78 305-CD-025-002

Associations:

The InRequestManager_S class has associations with the following classes:
Class: InRequest Creates
Class: InMediaIngest SendsReqeustTo
Class: InInteractiveIngestB SendsRequestTo
InRequestManager (Aggregation)

4.3.49 InRequestProcessData Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Provides checkpoint storage of data granule processing information associated with a given
ingest request. In the event of request completion, this item is deleted.

Attributes:

myDBAccess - The pointer to the instance of the InDBAccess class used to connect to the
database.
Data Type:InDBAccess*
Privilege:Private
Default Value:

Operations:

GetGranuleStateForRecoveryB - This function will call a Sybase stored procedure to
determine what the granule state was prior to abort of request processing. The stored
procedure will check to see if the granule had been previously restarted. If it had, the stored
procedure will return failure status. The stored procedure sets retry flag to 1 to indicate a
retry has occurred. The C routine will return ResultingAction based on status of stored
procedure.
Arguments:EcTInt ReqeustID, EcTInt GranuleID, RWString ResultingAction
Return Type:EcUtStatus
Privilege:Public

GetRequestData - Select RequestProcessData information for the RequestID.
Arguments:const EcTInt requestID, const RWCString filename, EcTInt& rowcount

4-79 305-CD-025-002

Return Type:EcUtStatus
Privilege:Public

InRequestProcessData
Arguments:InDBAccess* DBAccess
Return Type:Void
Privilege:Public

Insert - Insert a new record into the RequestProccessData table and insert file info into the
RequestFileInfo table.
Arguments:const EctInt requestID, const InTDbReqProcessData* reqProcessData,const
RWTPtrOrderedVector<InTDbReqFileInfo>* reqFileInfoList
Return Type:EcUtStatus
Privilege:Public

UpdateState - Update the state for a given DataType.
Arguments:const RWCString dataTypeState, const EcTInt requestID, const EcTInt
granuleID, const RWCString dataType const EcTInt timeToCompleteState
Return Type:EcUtStatus
Privilege:Public

~InRequestProcessData
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:

The InRequestProcessData class has associations with the following classes:
Class: InRequestController Accesses
Class: InRequestFileInfo
Class: InRequestSummaryData IsMovedTo
Class: InRequestSummaryData IsMovedto
Class: InRequest IsStoredIn

4.3.50 InRequestProcessHeader Class

4-80 305-CD-025-002

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Provides checkpoint storage of ingest request processing information associated with a
given ingest request. In the event of request completion, this item is deleted.

Attributes:

myDBAccess - The pointer to the instance of the InDBAccess class used to connect to the
database.
Data Type:InDBAccess*
Privilege:Private
Default Value:

Operations:

Delete - Delete a requestID record.
Arguments:EcTInt RequestID, RWTime ProcessingEndDataTime
Return Type:EcUtStatus
Privilege:Public

GetDataVolume - Get the DataVolume for a given RequestID.
Arguments:const EcTInt requestID, EcTInt&dataVolume
Return Type:EcUtStatus
Privilege:Public

GetGraphicalData - Select RequestProcessHeader GUI graphical information for a given
RequestID into a file.
Arguments:const EcTInt requestID, const RWCString fileName, EcTInt&rowCount
Return Type:EcUtStatus
Privilege:Public

GetGraphicalData - Select RequestProcessHeader GUI graphical information for all
current requests into a file.
Arguments:const RWCString filrname, EcTInt&rowCount
Return Type:EcUtStatus
Privilege:Public

4-81 305-CD-025-002

GetGraphicalData - Select RequestProcessHeader GUI graphical information for a given
Data Provider into a file.
Arguments:const RWCString externalDataProvider, const RWCString fileName,
EcTInt&rowCount
Return Type:EcUtStatus
Privilege:Public

GetInteractiveUserStatus - Select request status information for a given user.
Arguments:RWCString ExternalDataProvider
Return Type:EcUtStatus
Privilege:Public

GetReqDataByingestType - Select RequestProcessHeader information for a given Ingest
Type.
Arguments:const RWCString ingestType, const RWCString filename, EcTInt& rowCount
Return Type:EcUtStatus
Privilege:Public

GetRequestData - Select RequestProcessHeader information for a given RequestID into a
file.
Arguments:const EcTInt requestID, const RWCString filename, EcTInt& rowcount
Return Type:EcUtStatus
Privilege:Public

GetRequestData - Select RequestProcessHeader information for a given RequestID into a
file.
Arguments:const RWCString filename, EcTInt rowCount
Return Type:EcUtStatus
Privilege:Public

GetRequestData - Select RequestProcessHeader information for a given RequestID into a
file.
Arguments:const RWCString externalDataProvider, const RWCString filename, EcTInt&
rowCount
Return Type:EcUtStatus
Privilege:Public

GetRequestMgrUR - Get the ReqMgrUR for a given RequestID.
Arguments:const EcTInt requestID, RWCString&reqMgrUR
Return Type:EcUtStatus
Privilege:Public

InRequestProcessHeader

4-82 305-CD-025-002

Arguments:InDBAccess*
Return Type:Void
Privilege:Public

Insert - Insert a new record into the RequestProcessHeader table.
Arguments:EcTInt requestID, EcTInt reqPrio, EcTInt sequenceID, EcTInt sessionID,
RWCString ingestType, RWCString extDataProv, RWTime expDateTime, EcTInt
totDataVol, EcTInt totGranCnt, RWString mission, EcTInt totFileCnt, RWTime
procStartTime, RWCString reqMgrUR
Return Type:Void
Privilege:Public

RequestDataFetch - Execute the SQL command to select data from the
RequestProcessHeader table and fetch the results and store them in the input file.
Arguments:RWCString SQLCmd, RWCString filename, EcTInt&rowCount
Return Type:EcTuStatus
Privilege:Public

RequestDataSelectCmd - Create the select part of the SQL command to get the needed
data from the RequestProcessHeader table.
Arguments:EcTVoid
Return Type:static RWCString
Privilege:Public

UpdatePercentComplete
Arguments:const EcTInt percentComplete, const EcTInt requestID
Return Type:EcUtStatus
Privilege:Public

UpdatePriority - Update the priority for a given Ingest request or Data Provider.
Arguments:const EcTInt requestPriority, const EcTInt requestID
Return Type:EcUtStatus
Privilege:Public

UpdatePriority - Update the priority for a given Ingest request or Data Provider.
Arguments:const EcTInt requestPriority, const RWCString externalDataProvider
Return Type:EcUtStatus
Privilege:Public

UpdateState - Update the Request State for a given Ingest request.
Arguments:const RWCString requestState, const EcTInt requestID
Return Type:EcUtStatus
Privilege:Public

4-83 305-CD-025-002

UpdateStateforStateChangeB - Updates the state status for a given request.
Arguments:RWCString RequestState, int requestID
Return Type:EcUtStatus
Privilege:Public

~InRequestProcessHeader
Arguments:EcTVoid
Return Type:Void
Privilege:Public

Associations:

The InRequestProcessHeader class has associations with the following classes:
Class: InRequestController Access
Class: InSession Inserts
Class: InRequestSummaryData IsMovedTo
Class: InRequest isStoredIn

4.3.51 InRequestSummaryData Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Provides long-term storage of summary data type statistics associated with a given data
granule in a given ingest request.

Attributes:

myDBAccess - The pointer of the DBAccess object class.
Data Type:InDBAccess*
Privilege:Private
Default Value:

myDataGranuleID - Numeric (ASCII) identifier of a data granule within an ingest
request. Determined incrementally for each data granule in an ingest request.
Data Type:int
Privilege:Private

4-84 305-CD-025-002

Default Value:

myDataGranuleVolume - Total data volume to be ingested for a data granule in an ingest
request. The total data volume for the data granule is determined by summing the data
volumes for the files comprising the data granule.
Data Type:int
Privilege:Private
Default Value:

myDataType - Data type identifier for the data granule. Selected from a list of valid data
type identifiers maintained by the Data Server.
Data Type:RWCString
Privilege:Private
Default Value:

myFinalStatus - Final error status for the ingest processing of a data granule.
Data Type:int
Privilege:Private
Default Value:

myRequestID - Identifier of the InRequest_S object to which this entry corresponds. This
is a primary key.
Data Type:int
Privilege:Private
Default Value:

myRetryCount - Indicates the number of retries Ingest should attempt before returning an
error.
Data Type:int
Privilege:Private
Default Value:

myTimeToArchive - Time from submit of archive request to Data Server to receipt of
completion status (success or fail).
Data Type:int
Privilege:Private
Default Value:

myTimeToPreprocess - Time from start of preprocessing of granule to time of completion
(success or fail) of preprocessing.
Data Type:int

4-85 305-CD-025-002

Privilege:Private
Default Value:

myTimeToXfer - Time from start of transfer for 1st file in granule to time of receipt of
status (success or failure) for last file in granule.
Data Type:int
Privilege:Private
Default Value:

myTotalFileCount - Total number of files in the granules.
Data Type:int
Privilege:Private
Default Value:

Operations:

GetSummaryData - Select Request Summary Data information for a given request into a
file.
Arguments:const EcTInt requestID, const RWCString filename, EcTInt& rowCount
Return Type:EcUtStatus
Privilege:Public

InRequestSummaryData
Arguments:InDBAccess* DBAccess
Return Type:Void
Privilege:Public

~InRequestSummaryData
Arguments:void
Return Type:Void
Privilege:Public

Associations:

The InRequestSummaryData class has associations with the following classes:
Class: InHistoryLog Accesses
Class: InRequestProcessData IsMovedTo
Class: InRequestProcessHeader IsMovedTo
Class: InRequestProcessData IsMovedto

4-86 305-CD-025-002

4.3.52 InRequestSummaryHeader Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
Provides long-term storage of summary request-level statistics associated with a given
ingest request.

Attributes:

myDBAccess - The pointer to the instance of the InDBAccess class used to connect to the
database.
Data Type:InDBAccess*
Privilege:Private
Default Value:

Operations:

GetStatistics - Based on search criteria from GUI, guery summary statistical data (average,
minimum, maximum request totals or request times).
Arguments:const InTHLSearchCriteria, const RWCStringfilename, int rowCount
Return Type:EcUtStatus
Privilege:Public

GetSummaryHeader - Select Request Summary Header information for a given request
into a file.
Arguments:const InTHLSearchCriteria searchCriteria, const RWCString filename, EcTInt
rowCount

InRequestSummaryHeader
Arguments:InDBAccess* DBAccess
Return Type:Void
Privilege:Public

~InRequestSummaryHeader
Arguments:void
Return Type:Void
Privilege:Public

4-87 305-CD-025-002

Associations:

The InRequestSummaryHeader class has associations with the following classes:
Class: InHistoryLog Accesses

4.3.53 InSDMetadata Class

Parent Class:InMetadata
Public:No
Distributed Object:No
Purpose and Description:
This class provides services to preprocess data which is in self-descriptive format other
than HDF.

Attributes:

All Attributes inherited from parent class

Operations:

InSDMetadata - This is the constructor service.
Arguments:

Preprocess - This operation will extract values from input files with a self-descriptive
format (other than HDF). It will access the correct MCFs and interact with InMetadataTool
Class to produce a metadata file which is acceptable to the Data Server Subsytem.
Arguments:

~InSDMetadata
Arguments:
Return Type:Void
Privilege:Public

Associations:

The InSDMetadata class has associations with the following classes:
None

4-88 305-CD-025-002

4.3.54 InScienceData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an abstact class

Attributes:

myInputScienceFile - The file name of the original science data.
Data Type:InFile*
Privilege:Private
Default Value:

myOutputScienceFile - The file name of the new science data generated by the ingest
preprocessing.
Data Type:InFile*
Privilege:Private
Default Value:

Operations:

Preprocess - This is an abstact operation.
Arguments:
Return Type:Void
Privilege:Public
This is an abstract operation

Associations:

The InScienceData class has associations with the following classes:
InDataPreprocessTask (Aggregation)

4.3.55 InServer Class

4-89 305-CD-025-002

Parent Class:EcPFManagedServer
Public:No
Distributed Object:Yes
Persistent Class:
Purpose and Description:
Provides a single point of entry to the Ingest system for all ingest interfaces. The object
class manages ingest sessions.

Attributes:

mySessionCount - The total number of sessions running under the Ingest Server.
Data Type:int
Privilege:Private
Default Value:

Operations:

StartServer - Starts up the Ingest Server.
Arguments:void
Return Type:int
Privilege:Public

Associations:

The InServer class has associations with the following classes:
Class: InSessionInfo IsManagedBy
Class: InSession Manages - All instance of InSession object is managed by one instance of
InServer object.

4.3.56 InServerExtRPC_C Class

Parent Class:Not Applicable
Public:Yes
Distributed Object:Yes
Purpose and Description:
This is the client/proxy implementation that defines the RPC for initiating an Ingest
Session.

4-90 305-CD-025-002

Attributes:

None

Operations:

CreateSession - This is a RPC that initiates a new Ingest Session.
Arguments:handle_t InServerBH, char *GatewayStringBH, error_status_t
*CreateSessStatus
Return Type:int
Privilege:Public

Associations:

The InServerExtRPC_C class has associations with the following classes:
Class: CsGateWay IsInvokedBy - The Gateway object interfaces with the InServerExtRPC
to initiate a new Ingest Session through the Ingest Server.
InServer (Aggregation)

4.3.57 InServerExtRPC_S Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
This is the server implementation that defines the services for creating a new session.

Attributes:

None

Operations:

CreateSession - Creates a new session for a given client upon receipt of an Authentication
Request.
Arguments:handle_t InServerBH, char *GatewayStringBH, error_status_t

4-91 305-CD-025-002

*CreateSessStatus
Return Type:Void
Privilege:Public

Associations:

The InServerExtRPC_S class has associations with the following classes:
InServer (Aggregation)

4.3.58 InServerIntRPC_C Class

Parent Class:Not Applicable
Public:Yes
Distributed Object:Yes
Purpose and Description:
This is the client/proxy implmentation for the InServer object class. The provided services
are to be used by the InSession object class.

Attributes:

None

Operations:

DeleteSession - Deletes the specified session from the InServer's Session List.
Arguments:handle_t InServerBH, int SessionId, error_status_t *DelSessStatus
Return Type:Void
Privilege:Public

Associations:

The InServerIntRPC_C class has associations with the following classes:
Class: InSession IsInvokedBy - InSession intefaces with InServerIntRPC_C to delete itself
from the InServer's session list.
InServer (Aggregation)

4.3.59 InServerIntRPC_S Class

4-92 305-CD-025-002

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
This is the server implementation (factory) for the InServer object class. The provides
services are to be used by the InSession object class.

Attributes:

None

Operations:

DeleteSession - Deletes the specified session from the InServer's Session List.
Arguments:handle_t InServerBH, int SessionId, error_status_t *DelSessStatus
Return Type:Void
Privilege:Public

Associations:

The InServerIntRPC_S class has associations with the following classes:
InServer (Aggregation)

4.3.60 InSession Class

Parent Class:EcPFManagedServer
Public:No
Distributed Object:Yes
Persistent Class:
Purpose and Description:
This is the super object class for specialization object classes that handle specific external
interfaces. In general, the object class manages the hand-shaking protocal with the ingest
service requestor. It verifies that the requestor has privilege to perform the data ingest
service. The InSession instantiates the InRequest and adds to the InRequestList to be
processed. In addition, the InSession allows cancellation, suspension, and resumption of
the Ingest Request processing running under the session. Suspension and resumption are
post Release A functions.

4-93 305-CD-025-002

Attributes:

myClientId - Session's client identifier.
Data Type:char *
Privilege:Private
Default Value:

mySessionGWBH - Session's binding handle with the Gateway.
Data Type:char *
Privilege:Private
Default Value:

mySessionId - The information that uniquely identifies the session.
Data Type:int
Privilege:Private
Default Value:

Operations:

InitSessServer - Starts up the session. The operation is invoked by the Ingest Server upon
receipt of an Create Session request from Gateway.
Arguments:char *GatewayBH
Return Type:int
Privilege:Public

ProcessRequest - Once DAN is received from the Client, this operation instantiates a new
Request an adds the request to the Ingest Request List, and sends DAA (DAN
Acknowledgement) to the Client.
Arguments:void
Return Type:int
Privilege:Public

ResumeSession - Resumes the session. All ingest processing running under the session
will be resumed. This is a post Relase A service.
Arguments:void
Return Type:int
Privilege:Public

SuspendSession - Suspends the session. All ingest processing running under the session
will be suspended. This is a post Release A service.
Arguments:void
Return Type:int
Privilege:Public

4-94 305-CD-025-002

TerminateSession - Terminates the session. All ingest processing running under the
session will be terminated.
Arguments:void
Return Type:int
Privilege:Public

Associations:

The InSession class has associations with the following classes:
Class: InRequestProcessHeader Inserts
Class: InRequestManager_C Invokes
Class: InServerIntRPC_C IsInvokedBy - InSession intefaces with InServerIntRPC_C to
delete itself from the InServer's session list.
Class: InSessionEcsRPC_C IsInvokedBy
Class: InServer Manages - All instance of InSession object is managed by one instance of
InServer object.
Class: InMessage Receives/Sends - The InSession object interfaces with the InMessage
object to access data messages that are interchanged between Ingest and the external Client.
Class: InRequestManager_C ReceivesRequestFrom
Class: InRequestManager_C SendsRequestTo

4.3.61 InSessionEcsRPC_C Class

Parent Class:Not Applicable
Public:Yes
Distributed Object:Yes
Purpose and Description:
This is the client/proxy implementation that defines services for sending outgoing data
messages from the ECS Ingest.

Attributes:

None

Operations:

ecsDDN - The RPC is invoked by ECS Ingest to send the Data Delivery Notice (DDN) data
message to the external client.
Arguments:handle_t GatewayBH, char *DDN, error_status_t ecsDDNstatus

4-95 305-CD-025-002

Return Type:Void
Privilege:Public

Associations:

The InSessionEcsRPC_C class has associations with the following classes:
Class: InSession IsInvokedBy
CsGateWay (Aggregation)

4.3.62 InSessionEcsRPC_S Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
This is the server implementation that defines services for sending outgoing data messages
from ECS Ingest to external client.

Attributes:

None

Operations:

ecsDDN - The RPC is invoked by ECS Ingest to send DDN (Data Delivery Notice) data
message to the external client.
Arguments:handle_t GatewayBH, char *DDNmsg, error_status_t ecsDDNstatus
Return Type:Void
Privilege:Public

Associations:

The InSessionEcsRPC_S class has associations with the following classes:
CsGateWay (Aggregation)

4-96 305-CD-025-002

4.3.63 InSessionExtRPC_C Class

Parent Class:Not Applicable
Public:Yes
Distributed Object:Yes
Purpose and Description:
This is the client/proxy implementation that defines the RPC (Remote Procedure Call) for
delivering data message from the external Client to ECS/Ingest.

Attributes:

None

Operations:

extDAN - This is the RPC that delivers the Data Availability Notice (DAN) data message
from the external client to ECS Ingest.
Arguments:handle_t InSessBH, char *DANmsg, char **DAAmsg, error_status_t
*extDANstatus
Return Type:Void
Privilege:Public

extDDA - The is the RPC that delivers the Data Delivery Ack (DDA) from the external
client to ECS Ingest.
Arguments:handle_t InSessBH, char *DDAmsg, error_status_t *status
Return Type:Void
Privilege:Public

Associations:

The InSessionExtRPC_C class has associations with the following classes:
Class: CsGateWay Invokes - The Gateway object interfaces with the InSessionExtRPC
object to deliver the DAN and DDA data messages received from the external Client to
Ingest Session.
InSession (Aggregation)

4.3.64 InSessionExtRPC_S Class

Parent Class:Not Applicable
Public:No

4-97 305-CD-025-002

Distributed Object:Yes
Purpose and Description:
This is the server implementation that defines services for sending data messages from the
external client to ECS Ingest.

Attributes:

None

Operations:

extDAN - This is the RPC that delivers the Data Availability Notice (DAN) data message
to ECS Ingest.
Arguments:handle_t InSessBH, char *DANmsg, char **DAAmsg, error_Status_t
*extDANstatus
Return Type:Void
Privilege:Public

extDDA - This is the RPC that delivers the Data Delivery Ack (DDA) from the external
client to ECS Ingest.
Arguments:handle_t InSessBH, char *DDAmsg, error_status_t *extDDAstatus
Return Type:Void
Privilege:Public

Associations:

The InSessionExtRPC_S class has associations with the following classes:
InSession (Aggregation)

4.3.65 InSessionInfo Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:

4-98 305-CD-025-002

Keeps track of all the sessions running under the Ingest Server.

Attributes:

ClientID - The identifier of the external client.
Data Type:char *
Privilege:Private
Default Value:
Contraints:
Non Persisent Flag:False

SessionID - The identifier of the Ingest Session.
Data Type:int
Privilege:Private
Default Value:
Contraints:
Non Persisent Flag:False

Operations:

AddSession - Adds a session to the Ingest Server's session list.
Arguments:char *ClientID, int SessionID
Return Type:int
Privilege:Public

DeleteSession - Deletes a session from the Ingest Server's session list.
Arguments:int SessionID
Return Type:int
Privilege:Public

ListSessions - Lists all sessions in the Ingest Server's session list.
Arguments:void
Return Type:int
Privilege:Public

SearchSession - Searches for a session in the Ingest Server's session list based on the
external client identifier.
Arguments:char *ClientID
Return Type:int
Privilege:Public

4-99 305-CD-025-002

SearchSession - Searches for a session in the Ingest Server's session list based on the
session identifier.
Arguments:int SessionID
Return Type:int
Privilege:Public

Associations:

The InSessionInfo class has associations with the following classes:
Class: InServer IsManagedBy

4.3.66 InSessionIntRPC_C Class

Parent Class:Not Applicable
Public:Yes
Distributed Object:Yes
Purpose and Description:
This is the client/proxy implementation for exporting the data messages to the InSession
object class.

Attributes:

None

Operations:

IntDDN - This is the RPC that exports the Data Delivery Notice (DDN) data message to
the InSession object class.
Arguments:handle_t InSessBH, char *DDN, error_status_t IntDDNstatus
Return Type:Void
Privilege:Public

4-100 305-CD-025-002

Associations:

The InSessionIntRPC_C class has associations with the following classes:
InSession (Aggregation)

4.3.67 InSessionIntRPC_S Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
This is the server implementation for exporting data messages to the InSession object class.

Attributes:

None

Operations:

InDDN - This is the RPC that exports the Data Delivery Notice (DDN) data message to the
InSession object class.
Arguments:handle_t InSessBH, char *DDN, error_status_t InDDNstatus
Return Type:Void
Privilege:Public

Associations:

The InSessionIntRPC_S class has associations with the following classes:
InSession (Aggregation)

4.3.68 InShortDAA Class

Parent Class:InMessage
Public:No
Distributed Object:No

4-101 305-CD-025-002

Purpose and Description:
This object class populates the short DAA (DAN Acknowledgement) data message to be
sent to the external Client after the receipt of the DAN.

Attributes:

myShortDAA - This is the short DAA (DAN Acknowledgement) data message.

Operations:

FillDAA - This function will package the short DAA for the DAN Acknowledgement.
Arguments:int DAAStatus, int DANSeqNo

Associations:

The InShortDAA class has associations with the following classes:
None

4.3.69 InShortDDN Class

Parent Class:InMessage
Public:No
Distributed Object:No
Purpose and Description:
This object class populates the short DDN (Data Delivery Notice) data message to be sent
to the external Client after the data is archived.

Attributes:

myShortDDN - Short Data Delivery Notice (DDN) data message.
Data Type:Short DDN msg
Privilege:Private
Default Value:

Operations:

4-102 305-CD-025-002

FillDDN - Populates the short DDN data message with the given status information.
Arguments:int DDNStatus, int DANSeqNo
Return Type:Void
Privilege:Public

Associations:

The InShortDDN class has associations with the following classes:
Class: InRequest builds

4.3.70 InSnowIceData Class

Parent Class:InScienceData

Attributes:

All Attributes inherited from parent class

Operations:

InSnowIceData - This is the constructor service.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - This service provides the functionality to preprocess Snow/Ice Data.
Arguments:
Return Type:EcUtStatus
Privilege:Public

~InSnowIceData - This is the destructor service.
Arguments:
Return Type:Void
Privilege:Public

Associations:

4-103 305-CD-025-002

The InSnowIceData class has associations with the following classes:
None

4.3.71 InSourceMCF Class

Parent Class:InDBAccess
Public:No
Distributed Object:No
Persistent Class:True
Purpose and Description:
This class retains configuration information on source input files (i.e., source parameter
name, parameter location). This class provides services to retrieve, delete, and add
configuration information for a specific source metadata configuration.

Attributes:

myCmd - This attribute specifies the Sybase command pointer.
Data Type:CS_COMMAND
Privilege:Private
Default Value:

myCtr - This attribute is the local counter.
Data Type:EcTInt
Privilege:Private
Default Value:

myDataType - This attribute specifies the data type (e.g,, CER00, LIS00) associated with
the source metadata configuration file.
Contraints:
Non Persisent Flag:False

myFileType - This attribute specifies the file type (e.g. metadata, science) associated with
the source metadata configuration file.
Contraints:
Non Persisent Flag:False

myFilename_vector - This attribute defines the ordered vector which contains a list of
source mcf rows.
Data Type:RWTPtrOrderedVector <ParInfo>
Privilege:Private
Default Value:

4-104 305-CD-025-002

myMCFTable

myNumCols - This attribute specifies the number of columns in the result set.
Data Type:CS_INT
Privilege:Private
Default Value:

myParInfo - This attribute references the structure which stores parameter information.
Data Type:ParInfo*
Privilege:Private
Default Value:

myRetCode - This attribute specifies the Sybase return status.
Data Type:CS_RETCODE
Privilege:Private
Default Value:

mySQLCmd - This attribute specifies the SQL command pointer.
Data Type:RWCString*
Privilege:Private
Default Value:

mySourceMCF - This attribute references the appropriate SourceMCF.
Data Type:RWCString*
Privilege:Private
Default Value:

Operations:

GetNextPar - This service provides a structure representing parameter information on the
next applicable parameter of the SourceMCF.
Arguments:ParInfo** ParHolder
Return Type:EcUtStatus
Privilege:Public

GetSourceMCF - This service downloads the applicable Source MCF information from
the Ingest database.
Arguments:RWCString SourceMCF
Return Type:EcUtStatus
Privilege:Public

InSourceMCF - This is the default constructor service.

4-105 305-CD-025-002

Arguments:void

InSourceMCF - This is the constructor service.
Arguments:RWCString SourceMCF
Return Type:void
Privilege:Public

~InSourceMCF - This is the destructor service.
Arguments:void
Return Type:void
Privilege:Public

Associations:

The InSourceMCF class has associations with the following classes:
Class: InMetadata defines - The InSourceMCF class defines the InMetadata class by
providing format informatin on input metadata files.

4.3.72 InTOMSData Class

Parent Class:InScienceData

Attributes:

All Attributes inherited from parent class

Operations:

InTOMSData - This is the constructor service.
Arguments:
Return Type:Void
Privilege:Public

Preprocess - This service provides the functionality to preprocess TOMS data.
Arguments:
Return Type:EcUtStatus
Privilege:Public

~InTOMSData - This is the destructor service.

4-106 305-CD-025-002

Arguments:
Return Type:Void
Privilege:Public

Associations:

The InTOMSData class has associations with the following classes:
None

4.4 Ingest CSCI Dynamic Model
Information is provided for the critical Ingest Subsystem scenarios. The scenarios are each in two
parts--the set of scenario steps and an event trace diagram. The set of scenario steps provides a text
description of the interactions between object classes in a scenario. The event trace diagram
pictorially describes the interaction between object classes and external interfaces participating in
a scenario.

4.4.1 Automated Network Ingest (Get) Scenario

ECS performs automated network ingest upon receipt of a Data Availability Notice (DAN)
stimulus. The Landsat-7 LPS, SDPF, TSDIS, and SCF interfaces are candidates for use of this
protocol. In this scenario, ECS will perform the data transfer (get) from the external location to the
ECS system.

If the external data provider is not a DCE client, there will an ECS Gateway that will translate the
TCP/IP socket service class received from the external data provider to the corresponding Remote
Procedure Call (RPC) provided by the ECS Ingest. In the scenario diagram, the "External Data
Provider Process" would be the Gateway if the external data provider does not have DCE.

The following list describes the Automated Network Ingest (Get) scenario using object classes.
Figure 4.4-1 is the corresponding event trace diagram. The numbers in the following list refer to
the steps in the diagram.

Table 4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram (1 of 3)

Step Service Description

1 CreateSession() The Ingest server instantiates a new Ingest Session and setup
the connection between Ingest Session and the External Data
Provider process

2 extDAN() External Data Provider process sends a DAN (Data Availability
Notice) message to Ingest system. The DAN is verified and a
DAA (DAN Ack) is returned

3 WriteEvent() Log the receipt of DAN

4-107 305-CD-025-002

Step Service Description

4 GetRequestId()
(Next Available)

Assign an unique ID for the Ingest Request

5 Checkpoint Request ()
InRequestProcess Data ()
InRequestFileInfo ()

Checkpoint all DAN Granules and file information to database
Partition DAN into granules (File Groups) for Remote Granule
Processing

6 ProcessRequest() Request to perform the Automated Network Ingest Request

7 Constructor Instantiate Request object

8 Construct In Granule Server_C object. Determine UR of Server to
Process Request Build Process Granule Message

9 Build MSG() Build Process Granule Message

10 Process Granule () Send Process Granule Message to appropriate
InGranuleRequestServer_S

11 Receive MSG() Receive Process Granule Message. Construct
InGranuleAsync_C
object

12 Constructor Construct InGranule Async_S object

13 Constructor Instantiate InDataTransfer object

14 Constructor
InDataTypeList()

Construct DAN granule object and then populate list of data
types to be
processed

15 AllocateResource() Request allocation of an available staging device

16 Transfer() Data Transfer all files in the granule from external location to the
resource object
location in ECS Ingest System

17 Update Status Update Granule Checkpoint information in database
(Submitted for archive)

18 Constructor Instantiate InDataPreProcessTask object

19 PreprocessData() Performs appropriate data preprocessing (e.g., metadata
check, conversion)

20 Update Status Update Granule Checkpoint information in database
(Preprocessed)

21 SendInsert() Send Insert Request to the appropriate DataServer

Refer to DID 313, Internal Interfaces, Section 4.2.12,
Insert_Data_SP12 for data insertion details

22

Update Status Update Granule Checkpoint information in database
(Archived)

23

Send MSG() Send Granule complete message

Table 4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram (2 of 3)

4-108 305-CD-025-002

Step Service Description

Repeat Steps 8-23 for each DataType

24

IntDDN Send DDN (Data Delivery Notice) to Session

25 ecsDDN Send DDN (Data Delivery Notice) to the External
Data Provider process providing Data Archive status

26 extDDA The External Data Provider process returns DDA (Data
Delivery Ack)

27 DeleteRequest() Removes the Ingest Request from the Ingest Checkpoint
database

Table 4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram (3 of 3)

4-109 305-CD-025-002

E
xt

er
na

lD
at

a

P
ro

vi
de

rP
ro

ce
ss

In
S

er
ve

r
In

S
es

si
on

 I.
 C

re
at

e
a

ne
w

In
ge

st
 S

es
si

on

 II
. R

ec
ei

ve
 (

D
A

N
)

D
at

a
A

va
ila

bi
lit

y
N

ot
ic

e

an
d

R
et

ur
n

D
A

A

 II
I.

R
eq

ue
st

 In
ge

st
 P

ro
ce

si
ng

 IV
. T

ra
ns

fe
r

D
at

a
to

 E
C

S

 V
. P

er
fo

rm
 P

re
pr

oc
es

si
ng

(e
.g

.,
co

nv
er

t,
m

et
ad

at
a

ch
ec

k)

 V
I.

P
er

fo
rm

 D
at

a
In

se
rt

 V
II.

 S
en

d
an

d

ac
kn

ow
le

dg
e

D
at

a
D

el
iv

er
y

 V
III

. D
el

et
e

R
eq

ue
st

 fr
om

 th
e

In
ge

st
 R

eq
ue

st
 L

is
t

In
R

eq
ue

st

M
an

ag
er

In
R

eq
ue

st

In
D

at
a

T
ra

ns
fe

rT
as

k
In

R
es

ou
rc

eI
F

In
D

at
a

P
re

pr
oc

es
sT

as
k

In
D

at
aS

er
ve

r

In
se

rt
io

nT
as

k

In
R

eq
ue

st

F
ile

In
fo

In
R

eq
ue

st

P
ro

ce
ss

D
at

a
In

G
ra

nu
le

S
er

ve
r_

S
B

In
G

ra
nu

le
A

sy
nc

_S
B

In
G

ra
nu

le
A

sy
nc

_C
B

In
G

ra
nu

le
S

er
ve

r_
C

B
In

D
A

N

1

3

4 5

6

7

24

25

26

27

2

8

9

10

11

12

13

14

15

16

17 18
19

20

21

22

23

F
ig

u
re

 4
.4

-1
.

In
_A

u
to

m
at

ed
_N

et
w

o
rk

_I
n

g
es

t_
G

et
_E

ve
n

t_
T

ra
ce

_D
ia

g
ra

m

4-110 305-CD-025-002

4.4.2 Polling Ingest (Files) Scenario

The Polling Ingest (Files) scenario describes the mechanism by which the Ingest Subsystem
acquires data from data centers which may not support an interprocess communication interface
with ECS. The ECS/NESDIS and ECS/DAO interfaces are candidates for use of this scenario. The
following list describes the Polling Ingest (Files) Scenario. Figure 4.4-2 is the corresponding event
trace diagram.

Table 4.4-2. Polling Ingest (Files) Event Trace

Step Service Description

1 Constructor Instantiate polling session (start timer) to detect new files from the
specified external directory

2 ProcessRequest() Initiate Ingest processing

3 constructor Instantiate InDAN object class

4 GenerateDAN() Generate a DAN file with file information retrieved from the
specified directory location

5 (InRequestManager()) See Table 4.4-1, Automated Network Ingest, Steps 4-23 for
request processing steps

6 CleanupDirectory() Perform appropriate directory cleanup by means of moving the
completed files to another directory

7 Delete() Log Completion of Request
Delete Checkpointed Information

Repeat steps 2-7 for ingesting next directory

4-111 305-CD-025-002

Figure 4.4-2. In_Polling_Files_Ingest_Event_Trace Dynamic Model

4.4.3 Polling Ingest (Delivery Record) Scenario

The Polling Ingest (Delivery Record) scenario describes the mechanism by which the Ingest
Subsystem acquires data from External I/Fs which control the initiation of data transfer. The
EDOS, LaRC DAAC, GSFC DAAC, ORNL DAAC, ACRIM, and SAGE-III interfaces are
candidates for use of the polling with delivery record scenario.

The following list describes the Polling Ingest (Delivery Record) Scenario. Figure 4.4-3 is the
corresponding event trace diagram.

Table 4.4-3. Polling Ingest (Delivery Record) Event Trace Diagram

Step Service Description

1 Constructor Instantiate polling session (start timer) to detect the Delivery
Record file from the specified ECS directory

2 ProcessRequest() Initiate Processing of request

(InRequestManager()) See Table 4.4-1, Automated Network Ingest, Steps 4-23 for
Request processing steps

3 CleanupDirectory() Perform appropriate Directory Cleanup by means of moving the
completed files to another directory

4 Delete() Store Request Summary information in Ingest Database and
Delete Request Checkpoint Data

ConIF InPollingIngest
Session

InDAN

 I. Startup Polling Client and
log start of Ingest

II. Transfer Data to ECS
Perform Preprocessing
(e.g., convert, metadata

check)
Perform Data Insert

III. Perform Directory Cleanup
Store Request Information in

Ingest Data Base

InRequestManager

1

2

3

4

5

6

7

Foldout

4-112 305-CD-025-002

Figure 4.4-3. In_Polling_Delivery_Record_Ingest_Event Trace Diagram

4.4.4 Interactive Ingest Scenario

The ECS provides the ECS users with the capability to perform interactive Ingest via the HTML
Forms Interface. An interactive user will connect via World Wide Web (WWW) to the ECS
Interactive Ingest Interface. The user, via HTML Forms, will submit a request to the ECS system
for data ingest.

The Interactive Ingest Interface provides four methods for the user/operator to define an ingest
request. See Section 4.5.7 Interactive Ingest Interface CSC for details. Note: The phrase data set
is used interchangeably with the word granule throughout these sections. The following list
describes one of these methods. In this Interactive Ingest scenario, the user has chosen to specify

ConIF InPollingIngestSession InRequestManager

I. Startup Polling Client

II. Initiate Processing
of Request

III. Transfer Data to ECS,
Perform Preprocessing,
Perform Data Insertion

IV. Perform Directory Cleanup,
Store Request Information

in Ingest Data Base

1

3

4

5

2

4-113 305-CD-025-002

the directory (or directories) where a data set (or data sets) resides. Figure 4.4-4 is the
corresponding event trace diagram. The numbers in the following list refer to the steps in the
diagram.

Table 4.4-4. Interactive Ingest Event Trace

Step Service Description

1 N/A User retrieves a Interactive Ingest Request Form via the WWW
client

2 N/A The Interactive Ingest Request Form is filled by the user and is
submitted to the Ingest Form Script via HTTP daemon. (The
HTTP daemon will parse the fields from the Form and invoke
Ingest Form Script) . The user has selected the data type
directory specification method of Ingest. The files for each data
set to be ingested have been pre-transferred by the user to ECS
configured and controlled directories. External users are
required to use KFTP to transfer files into ECS. Local users
(operators) can copy files to configured directories. Write access
to configured directories is operating system controlled

3 N/A The Ingest Form Script processes the Interactive Ingest Request
Form

4 ProcessFiles() The Ingest Form Script will, via DataType/FileType Form, specify
the data type of the data set to be ingested. The Ingest Form
Script will validate the data types then process all files in the ECS
configured directory for that data type. All file names will be
displayed back to user. The user is required to type in a file type
for each file

N/A The user can choose to repeat Step 4 for additional data sets.
Each data set must reside in a separate directory

5 GenerateDAN Generate a DAN file from the information retrieved from the
specified directories and the DataType/FileType Form

6 extDAN() The DAN is verified

7 N/A The Ingest Form Script displays the status to the WWW client

8 InRequestManager See Table 4.4-1, Automated Network Ingest, Steps 4-23 for
request processing steps

9 Write DDN() When the ECS Ingest System completes the Data Ingest, it
writes Completion Notification Information for HTML viewing

10 Delete() Store request summary information in the Ingest Database
Delete request checkpoint data. If the Ingest was successful,
Ingest software will delete user files from the ECS controlled data
type directories. If the ingest failed, the Ingest software will move
the files to a user accessible error directory. The user can
transmit corrected versions of the files. Then, via the Interactive
Ingest Interface, request the Ingest of the corrected dataset

11 NA The user will be notified via E-Mail of request completion. E-Mail
will include detail data set(s) file status information. The user can
also view last completed Data Deliver Notice (DDN) via the
HTML status form.

NA See Section 4.4.8, User Ingest Status Monitoring for details

4-114 305-CD-025-002

Figure 4.4-4. In_Interactive_Ingest_Event_Trace_Diagram_Dynamic Model

4.4.5 Hard Media Ingest Scenario

The ECS system provides operations personnel with the capability to perform hard media (e.g.,
8mm tape) ingest via the GUI Interface. A Media Ingest Session will be configured on the
Operator's GUI Interface to accept the request from the Operator via the GUI Interface and submit
the request to the ECS system for hard media ingest. The ASTER GDS interface and backup

InInteractiveIngestB

WWW
Client
User

InRequestManager

I. Get and fill in the Ingest
Request Form via http

III. Validate DAN

IV. Display DAN Validation Status

V. Send DAN Request to
Request Manager for

II. Package the fields in the
Request Form into a
DAN Data Message

InDAN

- Transfer of Data to ECS Workstage
- Preprocessing
- Data Insertion

VI. Create DDN for HTML Viewing,
Notify User of Completion,

Cleanup Directories

2

3

1

4

10

5

6

7

8

9

11

4-115 305-CD-025-002

interfaces for other external data providers (e.g., SDPF and EDOS) are candidates for use of the
hard media ingest scenario.

The following list describes the Hard Media Ingest scenario using object classes. Figure 4.4-5 is
the corresponding event trace diagram. The numbers in the following list refer to steps in the
diagram:

Table 4.4-5. Hard Media Ingest Event Trace

Step Service Description

1 Constructor Operator selects the Media Ingest option from the GUI interface
and instantiates a media interface client to read inputs from the
operator

2 CheckPrivilege() The Media Ingest Session verifies Operator's privilege

3 ReceiveMsg() Operator enters information needed for media ingest and the
 information is read in

4 ProcessRequest() Request to perform the media ingest request

5 DownloadFiles() Request to download files from the media to disk

6 AllocateResource() Allocate an available staging device

7 AllocateResource() Allocate an available peripheral device

8 CopyFile() Copy files from the media to disk working area

9

10 DellocateResource() Deallocate the peripheral device

11 GetRequestID
(Next Available(),
InRequestProcess Header)

Assign Unique Request ID and Checkpoint Request information
into Ingest Database after reading Media Delivery Record supplied
with media

12 extDAN() A DAN (Data Availability Notice) message is sent to the Ingest
system. The DAN is verified.

13 SendMsg() The Media Ingest Session displays the status to Operator screen

14 (InRequestManager()) See Table 4.4-1, Automated Network Ingest, Steps 5-23, for
Request Processing Steps

15 ecsDDN() When the Ingest system completes the data ingest, it sends a DDN
(Data Delivery Notice) to Request via E-Mail. The Ingest Operator
is notified of Completion Status on the Operator Screen

16 Delete()
(InResourceIF,
InRequestProcessHeader)

Cleanup Temporary Directories, Release Staging Resources,
Store Request Summary information in Ingest Database and
Delete Request Checkpoint Data

4-116 305-CD-025-002

Figure 4.4-5. In_Hard_Media_Ingest_Event_Trace_Diagram Dynamic Model

4.4.6 Ingest History Log Viewing Scenario

The ECS system provides operations personnel with the capability to view the
IngestRequestSummaryLog, a log that contains the results of all the past ECS ingest requests. The
operations personnel have the capability to specify the search criteria (e.g., time range), the
provider ID, data set name, and final request status of the IngestRequestSummaryLog for log
display. A History screen will be configured on the Operator's GUI Interface to accept the log
monitor request and the criteria specification from the operations personnel and invoke the
appropriate service (InRequestSummaryHeader) to get and display the Ingest History Log
information to the operations personnel's GUI screen.

The following list describes the Ingest History Log Viewing scenario using object classes. Figure
4.4-6 is the corresponding event trace diagram. The numbers in the following list refer to the steps
in the diagram.

Table 4.4-6. Ingest History Log Event Trace Diagram (1 of 2)

Step Service Description

1 Constructor Operator selects the Ingest History Screen from the GUI interface
and instantiates an InHistoryLogMonitor object to read input from
the operator

2 CheckPrivilege() Verify the Operator's privilege for log viewing

InMedia
IngestOperator InResourceIF

InRequest
Manager

InRequest

IV. Display Completion Status on
Operator Screen

V. When Ingest completes, send
E-Mail indicating status to

operator

VI. Delete/Cleanup Request
Directory Files

I. Accept Hard Media
Ingest from Operator

II. Allocate Resource Device
and download files from
Hard Media

III. Send a Request to
Request Manager

3

6, 7, 8, 9, 10

15

1

2

4, 5

16

12

11

14

13

foldout

4-117 305-CD-025-002

Figure 4.4-6. In_Ingest_History_Log_Viewing_Event_Trace_Diagram
Dynamic Model

Step Service Description

3 ReceiveMsg() Operator enters criteria information for the search

4 ProcessRequest() Request to perform log viewing

5 GetHeaderData() Based on the criteria provided by the Operator, invoke the service
to query the Ingest InRequestSummary Header according to the
Operator's specification

6 DisplayResults() Format and display the log results to the Operator's screen

7 GetData() Based on Operator’s selection of a single Request, get detail File
Group information from InRequestSummary data

8 DisplayResults Format and Display Request File Group information

Table 4.4-6. Ingest History Log Event Trace Diagram (2 of 2)

Operator InRequestSummaryHeaderInHistoryLog

 I. Accept Ingest History Log
ViewingRequest from Operator

 II. Get the Ingest History
Information from the
Ingest History Log

 III. Display results to the
Operator's screen

InRequestSummaryData

1

8

3

4

2

6

5

7

4-118 305-CD-025-002

4.4.7 Operator Ingest Status Monitoring Scenario

The ECS system provides operations personnel with the capability to monitor the status of the
ingest requests that are in progress. The operator has the capability to look at the status of all
requests or at only specific requests. An InStatusMonitoring screen will be configured on the
Operator's GUI Interface to accept the ingest status monitoring request and the criteria
specification from the operations personnel via the GUI Interface and invoke the appropriate
service to get and display the request states information to the operations personnel's GUI screen.

The following list describes the Operator Ingest Status Monitoring scenario using object classes.
Figure 4.4-7 is the corresponding event trace diagram. The numbers in the following list refer to
the steps in the diagram.

Table 4.4-7. Operator Ingest Status Monitoring Event Trace

Step Service Description

1 Constructor Operator selects the Ingest Request Monitor and Control option
from the GUI interface and instantiates a InRequestController
object to read input from the operator

2 CheckPrivilege() Verify the Operator's privilege for request status viewing

3 ReceiveMsg() Operator enters criteria information for the request search and is
read in as a status monitor request

4 ProcessRequest() Request to perform the request status monitoring

5 SearchRequest() Based on the criteria provided by the Operator, search for the
ingest request

6 Format Results() Format Results returned from Search

Repeat step 6 for every request that satisfies the criteria
specification

7 DisplayResults() Display the states of ingest requests to the Operator's screen

4-119 305-CD-025-002

Figure 4.4-7. In_Ingest_Operator_Status_Monitoring Event Trace Diagram

4.4.8 Interactive Ingest Operator Status Monitoring Scenario

The ECS system provides the science users with the capability to monitor the status of the user's
on-going ingest requests. A StatusMonitoring HTML Form will be available for user selection
from the Interactive Ingest HTML Form Interface (see Section 4.4.4).

Operator

 I. Accept Ingest Status Monitoring
Request from Operator

 II. Get the Status Information
of the Ingest Requests
specified by Operator

 III. Display results to the
Operator's screen

InRequestController InRequestProcessHeader

1

3

2

4

5

6

7

4-120 305-CD-025-002

The following list describes the Interactive Ingest Status Monitoring scenario using object classes.
Figure 4.4-8 is the corresponding event trace diagram. The numbers in the following list refer to
the steps in the diagram.

Figure 4.4-8. In_Interactive_Ingest_Status_Monitoring_Event_Trace Diagram

Table 4.4-8. User Ingest Status Monitoring Event Trace

Step Service Description

1 NA User selects the Ingest Request Status Monitoring option from the
Interactive Ingest Interface Request Form accessed on the WWW

2 NA Request information is filled in by the user (user name and data
type are required)

3 GetStatus() The Interactive Ingest Forms Script will access request data base
to determine current status of all requests from the user for the
specified data type (if data type is not specified, all requests for the
user are retrieved)

4 DisplayResults() Request(s) status are displayed to user

WWWClientUser
InRequestProcessHeaderInInteractiveIngestB

 I. Accept the Interactive Ingest Status
Monitor Request from the User

 II. Get the State Information of
User Ingest Requests

 III. Display the results to
the User's screen

InRequest

1

2

3

4

4-121 305-CD-025-002

4.4.9 Operator Request Control Scenario

The ECS system provides operations personnel with the capability to update an on-going ingest
request. The updates include: change priority, cancel, suspend, and resume. An
InRequestController screen will be configured on the Operator's GUI Interface to accept the update
request from the operations personnel via the GUI Interface and invoke the appropriate service to
perform the request update and display the update results to the operations personnel's GUI screen.

The following list describes the Operator Request Update scenario using object classes. Figure
4.4-9 is the corresponding event trace diagram. The numbers in the following list refer to the steps
in the diagram.

Table 4.4-9. Operator Request Update Event Trace (1 of 2)

Step Service Description

1 Constructor Operator selects the Request Control option from the GUI
interface and instantiates an InRequestController object to read
input from the operator

2 CheckPrivilege() Verify the Operator's privilege

3 ReceiveMsg() Operator enters request update information and is read in as a
request update request

4 ProcessRequest() Request to perform the request update

5 SearchRequest() Based on the criteria provided by Operator, search for the ingest
request

6 UpdateState If Cancel, Suspend or Resume has been selected, update
process state to cancelling, suspending or resuming

7 ProcessState Based on State, determine where control/request should be sent.
If a hard media ingest is currently being transferred from media,
notify the operator to use Hard Media GUI control box to control
the request

8 ChangePriority(),
Cancel(),
Suspend(), or
Resume()

Send control request to InRequest Manager for processing

9 ProcessChange For cancel, suspend, or resume, set flag to notify appropriate
pthread that a cancel, suspend, resume or priority change should
be performed for change priority request. Use OODCE pthread
control capability to increase the priority of the Ingest pthread

10 CancelTransfer(),
SuspendTransfer(), or
ResumeTransfer()

If the request is in Data Transferring state, ask the
DataTransferTask object to perform the specified service:
CancelTransfer(), SuspendTransfer(), or ResumeTransfer()

11 CancelPreprocess(),
SuspendPreprocess()
, or
ResumePreprocess

If the request is in the Data Preprocessing state, ask the
DataPreprocessTask object to perform the specified service:
CancelPreprocess(), SuspendPreprocess(), or
ResumePreprocess()

4-122 305-CD-025-002

Figure 4.4-9. In_Ingest_Operator_Request_Update_Event_Trace Diagram

4.4.10 Preprocessing Scenario

The Ingest Subsystem provides services to preprocess all types of ingested data. Preprocessing
includes extraction of metadata, conversion of metadata into a standard ECS format, metadata
range/field checking, and converting/reformatting science and ancillary data.

The following scenario describes the interaction between the Preprocessing CSC and external
classes from the initiation of data granule preprocessing to insertion of the preprocessed data into
the Data Server Subsystem. The scenario applies to a data type granule which consists of a separate
science and metadata file or a single data file where the metadata is embedded within the science
data. Other categories of data type granules follow a similar scenario. Figure 4.4-10 is the
corresponding event trace diagram.

Step Service Description

12 CancelInsert(),
SuspendInsert(), or
ResumeInsert()

If the request has already been sent to the Data Server for
insertion, ask the DataServerInsertionTask object to perform the
specified service:
CancelInsert(), SuspendInsert(), or ResumeInsert()

13 UpdateState() Update process state in the InRequestProcessHeader database
file. The updated state will be displayed on operator’s request
monitor console

Table 4.4-9. Operator Request Update Event Trace (2 of 2)

Operator InRequestProcessHeader InRequestManager
InRequest
Controller

I. Accept Operator
Ingest Request Update
Request

InDataTransfer
Task

InDataServer
InsertionTask

InData
PreprocessTask

II. Search for the
Operator specified request

III. Check the state
the request is in

IV. Perform update on the
selected ongoing
Ingest Request

V. Update Process State
in Data Base

1

3

4

5

2

6

7

8

9

10

11

12

13

4-123 305-CD-025-002

Table 4.4-10. Preprocessing Event Trace (1 of 2)

Step Service Description

1 Preprocess Initiate preprocessing task

2 InDataPreprocessList Create an initial list of files to be inserted into the Data Server
Subsystem

3 Preprocess Initiate preprocessing on data granule

4 GetDTInfo Obtain a list of file types associated with specific data type

5 GetNext Get next file off of Input List created by Request Processing CSC

6 GetFileType Obtain file type of file

7 GetFTInfo Get information characterizing file type

8 InScienceData Assume file type is science data, an instantiate correct
InScienceData specialization

9 Preprocess Execute required preprocessing on science data

10 AddtoList Add new file to Data Server insertion list

11 GetNext Get next file off of Input List created by Request Processing CSC

12 GetFileType Obtain file type of file

13 GetFTInfo Get information characterizing file type

14 DsCIDescriptor(GICli
ent &, UR &,
DsSdTypeID &

Create appropriate DsCIDescriptor object

15 GetMCF(ostream &) Access target metadata configuration file

Create a file object to store target metadata configuration file

16 InMetadata Assume file type is metadata, and instantiate correct metadata
specialization

17 Preprocess Execute required preprocessing on metadata

18 PGS_MET_INIT Initial metadata tool and load target metadata configuration file

19 PGS_MET_GetNext Get next target metadata parameter

20 GetParInfo Get information correlating target metadata parameter with
source parameter name and location of required data

21 GetParVal Perform necessary functions to obtain required value out of
source metadata file

22 Read Extract required value from source metadata file

4-124 305-CD-025-002

Step Service Description

23 PGS_MET_SET Set value in target metadata configuration file

24 Repeat Steps 20-25

25 PGS_MET_WriteFile Write final target metadata configuration file into a PVL file

26 Validate Validate metadata PVL file

27 AddtoList Add new file to Data Server insertion list

28 SendInsert Initiate data insertion

29 Refer to DID-313,
Internal Interfaces,
Section 4.2.12,
Insert_Data_SP12,
for data insertion
details

Open a data server session

Table 4.4-10. Preprocessing Event Trace (2 of 2)

4-125 305-CD-025-002

In
R

eq
ue

st
In

D
at

aP
re

pr
oc

es
sT

as
k

In
D

at
aP

re
pr

oc
es

sL
is

t
In

F
ile

In
F

ile
T

yp
eT

em
pl

at
e

In
S

ci
en

ce
D

at
a

D
sC

lD
es

cr
ip

to
r

In
M

et
ad

at
a

In
M

et
ad

at
aT

In
S

ou
rc

eM
C

F

In
D

at
aS

er
ve

r

In
se

rt
io

nT
as

k
In

D
at

aT
yp

eT
em

pl
at

e

P
re

pr
oc

es
s

In
D

at
aP

re
pr

oc
es

sL
is

t

P
G

S
_M

E
T

_I
N

IT

P
G

S
_M

E
T

_G
et

N
ex

t

G
et

P
ar

In
fo

R
ea

d

P
G

S
_M

E
T

_S
E

T

S
en

dI
ns

er
t

G
et

D
at

aS
er

vi
ce

U
R

G
et

N
ex

t

G
et

F
ile

T
yp

e

G
et

F
T

In
fo

In
sc

ie
nc

eD
at

a

P
re

pr
oc

es
s

A
D

D
to

Li
st

G
et

N
ex

t

G
et

F
ile

T
yp

e

G
et

F
T

In
fo

D
sC

ID
es

cr
ip

to
r

G
et

M
C

F

In
M

et
ad

at
a

P
re

pr
oc

es
s

A
dd

to
Li

st

S
ub

m
itD

at
a

fo
rA

rc
hi

vi
ng

P
G

S
_M

E
T

_

W
R

IT
E

_F
IL

E

V
al

id
at

e

F
ig

u
re

 4
.4

-1
0.

 I
n

_I
n

g
es

t_
P

re
p

ro
ce

ss
in

g
 S

ce
n

ar
io

1
E

ve
n

t
T

ra
ce

 D
ia

g
ra

m

4-126 305-CD-025-002

4.5 CSCI Structure
Table 4.5-1 shows the Computer System Components (CSCs) that comprise the Ingest CSCI.
Details for each CSC are provided in the following paragraphs. Table 4.5-2 shows the classes
making up each CSC.

Figure 4.5-1 shows the interactions of Ingest CSCs. Non-Ingest components are indicated by
shading.

Table 4.5-1. Ingest CSCI Components

CSC Description Type (Custom=DEV;
off-the-shelf=OTS)

Automatic Network Interface Communicates with the CSS Gateway DEV

Polling Ingest Client Interface Polls for data files or Delivery Record files in an
agreed location

DEV

Ingest Request Processing Moderates ingest processing steps DEV

Ingest Data
Preprocessing

Performs required preprocessing and interface
with the Data Server for data insertion

DEV

Ingest Data Transfer Transfers data from source to ECS staging
space

DEV

Operator Ingest Interface GUI screens allowing operations staff ingest of
hard media, ongoing ingest request status
monitoring, completed ingest request
information viewing, ingest request controlling
(e.g., canceling request; suspending and
resuming a request or set of requests; and
changing request priority), and ingest threshold
controlling (i.e. to view or to set the threshold).

DEV

Interactive Ingest Interface HTML Forms allowing users to ingest approved
data and to perform ongoing ingest request
status monitoring

DEV

Ingest DBMS Data Base Management System used to store
and provide access to the Ingest History Log
and other ingest internal data

OTS

Ingest Administration Data Provide services to access the History Log and
administrative information of the Ingest
Subsystem

DEV

Peripheral Software Provide all media peripheral access software
and operator administration functions for ingest
peripherals

Reuse

Viewing Tools Tools to allow displaying of ingested data for
validation (analysis) purposes

Reuse

Data Storage Software Software to store Level 0 data on working
storage and repository storage (for one year)

Reuse

Resource Administration Operator administration software to manage
and control the Data Storage Software

Reuse

Client Provides Science Data Server client interface
services.

Reuse

4-127 305-CD-025-002

Table 4.5-2. Ingest CSC Component to Class Mappings (1 of 2)
CSC Classes

Automated Network Ingest Interface InServerExtRPC_C
InServerExtRPC_S
InServerIntRPC_C
InServerIntRPC_S
InSession
InSessionExtRPC_C
InSessionExtRPC_S
InSessionInfo
InRequestInfo
InMessage
InShortDAA
InLongDAA
InShorDDN
InLongDDN
InDAN

Polling Ingest Client Interface InPollingIngest Session

Ingest Request Processing InRequest
InRequestManager
InRequestManager_C
InRequestManager_S
InGranuleServer_C
InGranuleServer_S
InGranulesAsync_C
InGranuleAsync_S
InGranuleMessage
InRequestProcessData
InRequestProcessHeader
InRequestFileInfo

Ingest Data Preprocessing InData PreprocesTask
InMetadata
InBOMetadata
InBOBinMetadata
InPVMetadata
InSDMetadata
InHDFMetadata
InScienceData
InFDFData
InSnowIceData
InTOMSData
InGRIBData
InReformatData
InDataTypeTemplate
InFileTypeTemplate
InSourceMCFTemplate
InDataPreprocessList
InDataServerInsertionTask

Ingest Data Transfer InDataTransferTask
InResourceIF
InFile

4-128 305-CD-025-002

Figure 4.5-1. Ingest CSC Interaction

The Automated Network Ingest Interface CSC sets up ingest sessions with external data providers
(e.g. TSDIS, SDPF and Landsat-7 LPS), via the CSS TCP/IP to OODCE Gateway. External data
providers submit Data Availability Notices (DANs) to request data ingest. Polling Ingest Client
Interface components poll accessible file system locations to detect data to be ingested; the
component submits an equivalent DAN. The Interactive Ingest Interface CSC allows an
authorized science user, document supplier or operator to create and submit a DAN interactively.

The Automated Network Interface CSC, the Polling Ingest Client Interface CSC and the
Interactive Ingest Interface CSC all submit ingest requests (containing DAN data items) to the
Ingest Request Processing CSC. The Ingest Request Processing CSC manages subsequent request

Operator Ingest Interface InGUISession
InIngestMainWindow
InMediaIngest
InMediaCheckIn
InRequestController

Interactive Ingest Interface InInteractiveIngest

Ingest Administration Data InRequestSummaryData
InRequestSummaryHeader
InExternalDataProviderThreshold
InPollingThreshold
InDBAccess

Table 4.5-2. Ingest CSC Component to Class Mappings (2 of 2)
CSC Classes

Gateway
(CSS)

DBMS

Ingest
Request

Processing

InData
Transfer

InData
Prepro-
cessing

Data
Storage
(Data

Server)

Client
(Data

Server)

Interactive
Ingest

I/F

Polling
Ingest
Client

I/F

Operator
Ingest

I/F

External
Data

Providers

Peripherals
(Data

Server)

Resource
Admin
(Data

Server)

= External entity

= Ingest CSC

= External CSC

= OTS

Automatic
Network
Ingest IF

InData
Insertion

Task

Legend:

4-129 305-CD-025-002

processing. The Ingest Request Processing CSC invokes the Data Transfer CSC to transfer data
from external locations. The Ingest Request Processing CSC invokes the Data Preprocessing CSC
to preprocess ingested data (e.g., validate metadata parameters) and then invokes the
InDataTransfer Task to insert data into the Data Server.

The shaded Data Server CSCs--Peripherals, Data Storage, Client, and Resource Administration--
provide data storage and peripheral access services. In the case of Level 0 data ingest, the Data
Server CSCs are reused in the Ingest Subsystem and implemented on Ingest Subsystem hardware.
For non-Level 0 data, the Ingest and Data Server CSCs are implemented on Data Server hardware.

4.5.1 Automatic Network Ingest Interface

The Automatic Network Ingest Interface CSC provides the fundamental capabilities to ingest data
into the ECS system. The CSC can be tailored to fit in a specific interface and is comprised of the
InServer, InServerExtRPC, InSession and InSessionExtRPC object classes. This CSC
corresponds to the "Generic Ingest Client Shell" CSC described in the SDPS System Design
Specification. Figure 4.5-2 illustrates the interaction between an external data source and the
Automatic Network Ingest Interface CSC.

The InServerExtRPC and InSessionExtRPC object classes define the OODCE Remote Procedure
Calls (RPCs) interface. The client is responsible for invoking the RPCs to request Ingest services.
The client initializes a connection to ECS Ingest Subsystem by invoking the CreateSession() RPC
of the InServerExtRPC object class. This RPC creates an Ingest Session and establishes a
connection with the external source. All the subsequent interactions with the external source are
defined in the InSessionExtRPC object class.

Figure 4.5-2. Automated Network Ingest Interface

If the external data source is not a OODCE client, there will be an ECS Gateway that will receive
the TCP/IP socket service calls from the external data source and translate the socket service calls
into OODCE RPC calls. The ECS Gateway will be supplied by the CSS Subsystem with support

ECS
Gateway

Send Message
(Authen Request,

DAN, or DDA)
via

Socket ServiceExternal
Data Source

InServer

InSession

Retrun Message
(Authen Response,

DAA, or DDN)
via

Socket Service

If Message = Authen Req,
call CreateSession RPC

Create a New Session
and pass in UUID assigned
by Gateway

NOTE:
All subsequent messages will
be communicated between
Gateway and InSession

Send DAN
message via RPC

Return DAA
message via RPC

2

1

Send DDA
message via RPC

Return DDN
message via RPC

3

64

5

Proxy client for
CreateSession,
DAN and DDA
RPC services

Proxy client for
DAA and DDN
RPC services

Server for
DAN and DDA
RPC services

Server for
DAA and DDN
RPC Services

Server for
CreateSession
RPC Service

Socket Service
Interface

= Standalone Process

= External

Legend:

4-130 305-CD-025-002

from Ingest. When the ECS Gateway receives an Authentication Request from the external source,
it authenticates the client and invokes the CreateSession RPC of the InServerExtRPC. A session
is created for the client and all other subsequent messages received over the TCP/IP sockets from
that client are mapped to an RPC and forwarded to the associated InSessionExtRPC object class.

The InServer object class is instantiated from the main program Ingest Server. It sets up as a server
and listens for incoming RPCs. It provides a single point of entry to the Ingest Subsystem for all
Automated Network ingest interfaces. When the external data source invokes the CreateSession()
RPC, an Ingest Session is established and linked with the external data source by the Ingest Server.
The InServer object class is responsible for managing all ingest sessions processing under the
server (i.e., keeping track of sessions by adding the session to its list when a new session is created
and deleting the session from its list when the session is terminated). A single session is created
for a given client. Upon termination of the InSession, the InServer deletes the associated session
and client information from its list. The InServer object class will be configured as a standalone
program initiated at system startup on the Ingest Client HWCI.

The InSession process is invoked by the CreateSession RPC of the InServerExtRPC object class.
The InSession object class is instantiated from within the process, after which the session is setup
as a server and listens for incoming RPCs from its client. The responsibility of the InSession object
class consist of 1) managing multiple requests from a single client, where each request corresponds
to a DAN message (RPC) with unique DAN sequence number, 2) instantiating an InDan object
which it uses to checkpoint DAN information in the InRequestProcess Header, InRequestProcess
Data and InRequestFileInfo Ingest Database classes, 3) sending a CreateRequest RPC call to
InRequest Manager to begin request processing, 4) sending outgoing Data Availability
Acknowledgments (DAA) to acknowledge the receipt of the DAN and Data Delivery Notifications
(DDN) to inform the client of the final status of their Ingest request, 5) cleaning up the request
information upon receipt of a Data Delivery Acknowledgement (DDA) from the client, and 6)
terminating the connection with the client upon completion of all requests. In addition, the object
class provides services to suspend and resume a session. The InSession object class will be
configured as a standalone program initiated by the InServer object class when the InServer
receives the CreateSession RPC.

The Automated Network Ingest Interface CSC provides the capability to ingest data in an
automated fashion by means of network data transfer into the ECS system. The ingest process is
initiated based on a stimulus provided by a DAN from the external interface. The TSDIS,
Landsat-7 LPS, SDPF, and SCF interfaces are candidates for the use of the Automated Network
Ingest Interface. This CSC corresponds to the "Ingest Clients for each External Interface" CSC
described in the SDPS System Design Specification. Figure 4.5-2 shows the public services
provided by the object classes of the Ingest Session Manager CSC.

4.5.2 Polling Ingest Client Interface CSC

The Polling Ingest Session CSC provides ECS with the capability to ingest data from data centers
with little or no handshaking. The CSC is comprised of the InSession and InPollingIngestSession
object classes. This CSC corresponds to the "Ingest Clients for each External Interface" CSC
described in the SDPS System Design Specification. Figure 4.5-3 provides a pictorial overview of
the Ingest Polling processing.

4-131 305-CD-025-002

The responsibilities of the InPollingIngest Object Class consist of 1) creating the proper polling
request, 2) detecting new files of interest at a tunable period of time in an external or local disk
location, 3) creating the InRequest Object Class (a component of the Ingest Processing CSC (refer
to Ingest Request Processing CSC for ingest details), 4) creating a unique identifier for the request
and adding requests to the InRequestProcessHeader, InRequestProcessData and InRequestFileInfo
Object Classes, and 5) reporting the status of its ongoing ingest requests.

The NESDIS, GSFC Data Assimilation Office (DAO), LaRC DAAC, GSFC DAAC, ACRIM,
SAGE-III, and EDOS interfaces are candidates for using the polling ingest protocol. The
InPollingIngestSession (Files) Scenario addresses the NESDIS and DAO interface, while the
InPollingIngestSession (Delivery Record) Scenario addresses the other interfaces. The
InPollingIngestSession (Delivery Record) Scenario proposes that the Ingest Subsystem detect and
read information contained in a Delivery Record. The Delivery Record has identical structure to
that of the Data Availability Notice (DAN) used in the Automated Network Ingest Interface. The
InPollingIngestSession (Files) Scenario proposes that the Ingest Subsystem detect and read
information contained in a remote directory. The functionality to initiate both scenarios is
contained in the Polling Ingest Session CSC.

Figure 4.5-3. Ingest Polling CSC

4.5.3 Ingest Request Processing CSC

The Ingest Request Processing CSC is the core component of the Ingest Subsystem. It manages
the ingest request traffic and the processing of the ingest requests. The CSC provides the capability
to process multiple ingest requests concurrently. The CSC is responsible for tracking the ingest
requests and coordinating the ingest processing, which is comprised of transferring data,
performing data preprocessing, and sending an insertion request to the appropriate Data Server.
The CSC is composed of InRequest, InRequest_C, InRequest_S, InRequestProcessHeader,
InRequestProcessData, InRequestFileInfo, InSystemThreshold, InExternalDataProviderInfo,
InGranuleServer_C, InGranuleAsync_C, InGranuleServer_S, InGranuleAsync_S,
InRequestManager, InRequestManager_C, and InRequestManager_S object classes. This CSC is
a new CSC not described in the SDPS System Design Specification.

External
Data Source

InPolling Ingest
Session

InRequest
Manager

4

1

Disk
Space
Area

Put Data Files

Set timer to
check files

2

Check for files,
if NOT found, goto 1.

3

Submit Request
for processing

Clean Up
Directory

5

Legend:

= Standalone Process

= External

4-132 305-CD-025-002

Figure 4.5-4. Ingest Request Processing CSC

The IngestRequestProcessing CSC follows the object factory model approach. In the factory
model a "factory object" is established to create other objects based on a client request. The factory
object provides a client and server component. For the Ingest Processing CSC the factory object
is InRequestManager_S, which operates as a "server". The client proxy object is
InRequestManager_C. It is linked with the "client".

InRequestManager_S creates InRequest objects. The InRequest object using the Server Request
Framework (SRF) sends processing requests to InGranuleServer_S for asynchronous granule
processing by InGranuleAsync_C objects. The InGranuleServer_S and InGranuleAsync_S
objects provide an object factory model approach to granule processing. InGranuleAsync_S
objects handle all subsequent data preparation and insertion into the Data Server. InRequest
Manager_S allocates concurrent processing volume thresholds for each request it instantiates.
These concurrent processing volume thresholds will be used by the InRequest object to throttle the
instantiation of the granule objects which perform the data transfer and preprocessing functions.
This throttling at the granule level permits multi-granule requests to begin processing even though
total request processing requirements exceed current threshold limits. Once InRequest objects are
created, they communicated directly with InSession to return DDN status (Automated Network
Ingest Requests only). Figure 4.5-4 shows the interaction of the generic object classes involved in
the Ingest Request Processing CSC.

At system startup, the CSC is configured as multiple standalone programs, including a single
InRequestManager and one or more InGranule Servers. The single copy of InRequestManager
runs on the Ingest Client HWCI (or, at sites with no Ingest Client HWCI, or the Data Server
subsystem equivalent) with only InRequestManager_S instantiated. InGranule Servers run on the
Ingest Client HWCI and on any Data Server HWCI where granule processing will be performed.
Each InGranuleServer Task is started up with only a single InGranuleServer_S object instantiated.
Locating InGranule Server tasks on Data Server as well as the Ingest HWCI promotes efficient
handling of transferred data by allowing Ingest to preprocess data where it has been staged
(transferred). The InRequestManager_C objects are instantiated as a client proxies.

InSession

2

10

3InRequest
Manager_C

InRequest
Manager_S

InRequest

[standalone process]

(This pthread executes all subsequent
data transfer, preprocessing and insertion
into the Data Server)

1

InGranuleServer_C

InGranuleAsync_C

InGranuleServer_S

InGranuleAsync_S

4

9

5

7

8

6

(This pthread tracks request processing)

4-133 305-CD-025-002

InRequestManager_C is invoked (Step 1 of Figure 4.5-4) which sends an RPC request to
InRequestManager_S (Step 2) which in turn creates an InRequest object as a separate pthread (Step
3). One pthread is created for each InRequest object. The distributed object reference (OID) for
InRequest is returned to InSession. InSession handles subsequent communications with
InRequest. In particular, InRequestManager_S invokes the ProcessRequest service of InRequest
which, for each granule in the request, sends a granule process request to InGranuleServer_C
object (Step 4). InGranuleServer_C builds a process granule request which is sent to
InGranuleServer_S via SRF (Step 5). The InGranuleServer_S constructs both the
InGranuleAsync_S object (Step 6) and the InGranuleAsync_S object (Step 7). The
InGranuleAsync_S object handles the data transfer, preprocessing and insertion of a granule into
the Data Server. All InGranuleAsync_S objects for a request are processed in parallel
(asynchronously). When a granule is complete (inserted into the Data Server), the
InGranuleAsync_S object notifies the InGranuleAsync_C object of the completion (Step 8). Once
all granules for a request have completed, InRequest object is notified (Step 9). InSession waits
for the return (via InRequestManager_C) of status upon completion of the data insertion (Step 10).

The client (InSession) checkpoints persistent context information about the OODCE connections
established above. In the event of a failure of the client, the OODCE context information is used
to reestablish the connection and receive return status.

The InRequest object attributes (including OODCE context information) are checkpointed in a
DBMS using InRequestProcessHeader and InRequestProcess Data objects. In the event of a
failure in InRequestManager_S or in InRequest, the InRequestManager_S object (after process
restart) restores all ongoing requests using checkpointed information. Each InRequest object
subsequently restores its contents, including OODCE context, from the checkpointed information.

The InRequest object contains information needed to start ingest processing for all granules in a
request. The InRequest object stores the state mode (i.e., "active" or "suspended") of the ingest
request. The InGranuleAsync_S objects manage each granule’s state (i.e., "transferred",
"preprocessed", "submitted to Data Server", and "Data Server insertion complete") of each data
granule specified in the request. State transitions are reported to the corresponding
InGranuleAsync_C object which decrements the requests’ concurrent processing volume statistics.
Granules being delayed by InRequest throttling algorithms will be re-evaluated by InRequest and
instantiated if threshold limits are no longer exceeded.

4.5.3.1 Evaluation of AutoSys to Support Ingest Request Processing

The AutoSys COTS product was evaluated for integration with the Ingest Request Processing
CSC. The result of the investigation was to reject the use of AutoSys. AutoSys has three main
strengths: 1) job execution on a pre-established job schedule, 2) concurrent job processing and
3) job load balancing across processors. Each of these strengths and their applicability to Ingest
requirements are discussed in the following paragraphs.

AutoSys's main strength is job execution on a pre-established schedule. This strength cannot be
directly utilized by Ingest, since Ingest clients are not required or expected to submit ingest
requests on a pre-established schedule.

AutoSys's second strength is concurrent job processing. Ingest achieves concurrent job processing
via the object factory model approach discussed in detail in the preceding section. Ingest's factory

4-134 305-CD-025-002

model utilizes OODCE pthreads to provide concurrent processing of requests. The object factory
approach is further supported by the ECSs Server Request Framework (SRF) which Ingest is
utilizing to provide concurrent processing of each granule within a request. AutoSys does not use
pthreads; instead, processing is performed in standalone processes. This requires more system
resources than using pthreads.

AutoSys's third strength, job load balancing across processors, cannot be utilized by Ingest since
the data type of an ingest request will dictate on which Data Server instance processing will occur.
Each Data Sever instance is pre-assigned a group of data types. In particular, all Level 0 data
archiving will utilize the Data Server instance running on the ICLHW.

Despite the mismatch of strengths to requirements, AutoSys was investigated to see if it could offer
Ingest a COTS solution to job queue management. Ingest requests may require queuing, if
resources are not available when the Ingest request is received. The AutoSys investigation
determined that AutoSys requires a significant amount of custom software support to manage a job
queue. The ECS Planning subsystem, current users of AutoSys, have elected to, via custom
software, reschedule and resubmit to AutoSys any job which fails to execute due to resource
limitations. AutoSys therefore, does not offer a solution to job queue management which could
be readily used by Ingest. Ingest therefore will rely on Data Server resource allocation queues as
well as the Ingest request throttling capability, discussed in the preceding section, to provide job
queues when necessary.

4.5.4 Ingest Data Transfer CSC

The Ingest Data Transfer CSC provides services to the Ingest Client CSCI to facilitate transfer of
data files into the Ingest Subsystem (on a file by file basis), to collect information on individual
ingested files, build lists of file objects to be ingested, and group files with valid data types. In
addition, the CSC allows the operator 1) to cancel the data transfer, 2) to put the data transfer on
hold, and 3) to resume the data transfer that was previously put to hold. This collective set of
services within the Ingest Data Transfer CSC is provided by the InDataTransferTask,
InTransferredData, and InFile object classes. The CSC is configured as a standalone program
initiated by the Ingest Request Processing CSC for every set of data granules to be transferred as
supplied by the Ingest Request Processing CSC. This CSC is a new CSC not described in the SDPS
System Design Specification.

The InDataTransferTask Object Class manages data transfer associated with a specific ingest
request. The InDataTransferTask Class provides services to instantiate files, invoke data transfers
(file by file), and allocate storage space via the InResourceIF Object Class.

The InFile Object Class provides services to obtain file information on files associated with a
specific transfer and to group a list of files with valid data types. This object class will provide
services to the InDataTransferTask Object Class to obtain data type information.

The InResourceIF Object Class serves as the interface to the resource/device services by which the
Data Server Subsystem provides. The Object class interfaces with the Storage Resource
Management and the Data Distribution CSCIs of the Data Server Subsystem to perform these
services. Refer to the Data Server volume for details.

4-135 305-CD-025-002

4.5.5 Ingest Data Preprocessing CSC

The Ingest Data Preprocessing CSC provides services to perform required preprocessing of data
and subsequent insertion of the data into the appropriate Data Server. The preprocessing of data
consists of converting the data (if needed), extracting the metadata into the standard ECS metadata
format (if needed), performing required metadata existence and parameter range checks, and
updating the metadata with ingest specific metadata (e.g., start and stop date/time for ingest). In
addition, the CSC is responsible for updating the request state, tracked by the Ingest Request
Processing CSC, whenever its state changes; and accepting request cancellation, suspension, and
resumption requests from the Ingest Request Processing CSC. This CSC corresponds to the
"Translation Tools" and "Data Compression/ Decompression Tools" CSCs described in the SDPS
System Design Specification.

The CSC depends on templates and configuration files to maintain data/file type policy and source/
target format information. These templates and configuration files supply necessary information
to other classes within the CSC in order to perform the required preprocessing for a specific data
type granule. The configuration files specify the input format and target format for specific data/
file types. Preprocessing classes rely on these files to specify how an ingested file is organized
upon arrival (source metadata configuration file), and how the data should be organized before
insertion (target metadata configuration file) into the data server. Most importantly, configuration
files can be modified with no software recompilation or modification within the ingest
preprocessing CSC. Source metadata configuration file modifications can be executed through the
Sybase ISQL . Target metadata configuration files are supplied by the Data Server Subsystem.

Each data type may consist of different file types (e.g., metadata, science, calibration). The
constituents of each data type are defined in a data type template. This template has a record for
each ingest data type specifying the file types that make up the data type. In addition, each file type
has unique characteristics. For instance, each different file type uses different metadata
configuration files. This type of information is contained in a file type template. These templates
may be modified through the Sybase ISQL. New entries (types) can be added to each of the
templates without recompilation or modification within the preprocessing CSC.

The utilization of configuration files and templates and their interaction with preprocessing
processes is illustrated in Figure 4.5-5, "Ingest Preprocessing CSC Data Flow". The preprocessing
control library obtains information from the templates to determine which preprocessing tools are
required (for a specific data/file type) and what the necessary inputs are for the chosen tools (1).
With the acquired information, preprocessing control can invoke the appropriate preprocessing
tools (2). The configuration files aid the preprocessing tools in determining how the ingested input
data is organized and the target format of the data (3). The preprocessing tools provide the
functionality to obtain the values of required parameters directly from the ingested files (4). The
preprocessing tools transform the ingested files into final products (5). Upon completion of
preprocessing, a list (or lists) of files is presented to the Data Server Subsystem for subsequent data
archival (6).

4-136 305-CD-025-002

Figure 4.5-5. Ingest Preprocessing CSC Data Flow

The Ingest Preprocessing Object Model (presented in section 4.3) provides an object oriented view
of the CSC. This object model presents preprocessing unique classes, as well as classes from other
CSCs or subsystems. Therefore, an understanding of the Preprocessing CSC and its interaction
with external classes can be viewed in one continuous model. The Ingest Data Preprocessing CSC
is composed of the InDataPreprocessTask, InMetadata (and its subclasses), InScienceData (and its
subclasses) , InDataTypeTemplate, InSourceMCF, InDataPreprocessList, InMetadataTool, and
InDataServerInsertionTask object classes. Each class is described in detail in the Preprocessing
CSC data dictionary and their respective roles are illustrated in the detailed preprocessing scenario
(Table 4.4-10). However, a general understanding of the object model can be gained by flowing
through the following high level object-oriented scenario.

A "preprocessing task" is initiated when the InDataPreprocessTask Class is instantiated by the
Ingest Request Processing CSC. As a result, the InDataPreprocessTask class controls the
preprocessing of a set of files associated with a given data type (on a per granule basis). This set of
files is contained in an InDataPreprocessList object. The InDataPreProcessTask utilizes the file list
and data type argument to access data/file type specific information from the InDataTypeTemplate
and InFileTypeTemplate classes. The acquired information is used to properly instantiate the
appropriate data type subclasses (i.e., InPVMetadata). The instantiated data type subclasses then
interact with other classes (i.e., InSourceMCF, DsCIDescriptor, InMetadataTool) to produce final
products before insertion into the Data Server Subsystem. The InSourceMCF class provides
information on a data type basis on how to retrieve applicable parameter values (e.g., the location
of parameter, computer data type). The DsCIDescriptor is a data server class which provides
services to acquire a target metadata configuration file and validate metadata. Utility tools
(provided by PDPS Toolkit) provides services to read target metadata configuration files and write
PVL metadata files. After completion of the preprocessing task, the InDataServer InsertionTask
Class interacts with the Data Server Subystem (DsCIESDTReferenceCollector, DsCIRequest,
DsCICommand) to insert the preprocessed data files. Detailed scenarios illustrating interactions

Data
S erver

Preprocessing
Tools

Ingested
Files

Preprocessed
Files

Templates

Configuration
Files

ISQL

Data Type Policy
File Type

Characteristics

Source Configuration
Target Configuration

Tool Choice
Tool Inputs

Reformatted/
Çonverted
Data PVL
Metadata

Raw Metadata
Raw Science

List o f
preprocessed

files

2

3

4

5

6
Data

Inputs

Data
Inputs

Preprocessing
Control

Key:

Data Preprocessing Steps

Pre- Data Arrival Steps

Files/Database

Library

E xternal CSC/Subsystem

1

4-137 305-CD-025-002

between all classes are provided later in this section. With the basic concept of operations in place,
the design principles used to develop the object models and individual classes are presented in the
following paragraphs.

The Ingest Subsystem will receive data from a variety of external sources and instruments as
illustrated previously in Figure 3.1-1. This variety of instruments and sources produce data types
which have different file formats (e.g., HDF, SFDU, GRIB), data formats, metadata parameters,
and data organizations (e.g., separate file for metadata vs. embedded metadata). This diverse set of
ingest data types necessitates different implementations of preprocessing services based on each
individual data type or set of data types. For instance, the implementation of conversion services
requires different algorithms for data types which possess different initial and/or target formats. In
addition, each ingest data type may make use different preprocessing services. For instance, some
data types require metadata extraction (e.g., CERES L0 Data, NMC GRIB data), while other data
types may provide a separate file which contains only metadata (e.g., TOMS Gridded Ozone,
AVHRR Monthly GVI). Therefore, the first major design goal for the Ingest Preprocessing CSC
is to provide the capability to preprocess this diverse set of data types efficiently and adequately.
The tailoring of preprocessing services to address this diverse set of data types is done by
specializing the data type base classes, InMetadata and InScienceData.

The level of specialization for these data type base classes is limited by the second major design
goal, eliminating redundancy. The data type subclasses are designed to address groups of data
types (where possible) versus a subclass for each data type. If the data types within each group are
similar, the services within these subclasses can be tailored to properly preprocess the individual
data types through the arguments of the called services. The values of these arguments, for a
specific data type, are obtained through the InFileTypeTemplate. The "Template" Class contains
information on how to preprocess each specific data type/file type. Part of the information
contained in these classes also defines the argument values (dependent on data type) for subsequent
use of data type subclass services.

For example, the InPVMetadataClass is a specialization of the InMetadata Class which contains
the appropriate preprocessing service for parameter-value metadata. For different data types within
this group (parameter-value metadata), different delimiters may be used to separate a parameter
from a value. The delimiter for each specific data/file type is defined in the
InFileTypeTemplateClass. This information is passed to the InPVMetadataClass upon
instantiation. The InPVMetadataClass services will utilize the input arguments to define the
appropriate delimiter for a specific service. Whether the delimiter is a semicolon or equal sign does
not effect the design of the service. However, it does effect the execution of the service and the
resultant product. The delimiter may differ with each data type and therefore must be defined in
the input arguments of the service.

This design also helps fulfill the third major design goal, flexibility and extensibility. The CSC is
flexible, since modification of existing data types will be feasible. For example, changes in input
metadata structure or required metadata output structure are driven by the metadata configuration
files. The Data Server subsystem will provide services to access "target" metadata configuration
files. These files will dictate the metadata requirements for each data type. Through an iterative
process, the preprocessing CSC will retrieve the input values from the input metadata file(s). The
InSourceMCF class, provides correlation between the target parameter names in the target

4-138 305-CD-025-002

metadata configuration file with access information on the input metadata file. The InMetadata and
InScienceData classes utilize these metadata configuration files to produce final products.

The system is extensible, since new data types may be added without major design change. Not
only does the basic design often not have to change to accommodate new data types, but some of
the preprocessing subclasses may be used for future data types. The implementation of broad
based specializations, provides a greater probability that a new data type will fit into an existing
data group versus creating a new class for that data type.

The following paragraphs will discuss general preprocessing requirements and how each
requirement applies to some of the ingest data types listed in the tables. Table 4.5-3 summarizes
ECS data type/set preprocessing requirements for all Release A data types. Items marked as TBR
are to be resolved post-Release B CDR with the data providers and processing teams. Table 4.5-4
summarizes ECS data type/set preprocessing requirements for known Release B data types. (Note:
1. Additional ancillary data sets required for Release B processing are currently under review by
the Data System Working Group (DSWG) and the ad hoc working group for processing. Table
4.5-4 will be updated post-CDR. 2. All Release A ancillary data continue to be required at Release
B).

Table 4.5-3. Release-A Ingest Data Type Preprocessing Requirements (1 of 2)
Data Set(s) File Format Convert Reformat Field/Range

Checking
Embedded
Metadata

ICD

CERES Level
0 Data

SFDU No No Yes No 1

LIS Level 0
Data

SFDU No No Yes No 1

TRMM H/K
Data

SFDU No No Yes No 1

TRMM Orbit
Data

SFDU No No Yes No 1

LIS SCF
Constants and
Coefficients

Binary/ASCII No No Yes No 2

CERES SCF
Constants and
Coefficients

Native/HDF No No Yes No 2

CERES SCF
Generated
Ancillary Data
Files

Native/HDF No No Yes No 2

TSDIS Level
1a Data

SFDU No No Yes No 3

TSDIS Level
1b-3b Data

HDF No No Yes Yes 3

NMC-MRF GRIB Yes - to HDF Yes Yes Yes 5

NMC-ETA GRIB Yes - to NDF Yes Yes Yes 5

4-139 305-CD-025-002

Note: Digital elevation map and surface map of vegetation are static data sets and do not require ingest
 preprocessing.

 1. ICD between ECS and the SDPF (209-CD-025-002)
 2. ICD between ECS and Science Computing Facilities (209-CD-005-004)
 3. ICD between ECS and TSDIS (209-CD-007-003)
 4. ICD between ECS and the NOAA ADC (209-CD-006-004)
 5. ICD between ECS and the GSFC DAAC for the ECS Project (209-CD-008-003)
 6. ICD between ECS and LaRC DAAC (209-CD-010-002)
 7. ICD between ECS and MSFC DAAC (209-CD-009-002)
 8. ICD between ECS and Version 0 System

Data Set(s) File Format Convert Reformat Field/Range
Checking

Embedded
Metadata

ICD

NMC-FNL GRIB Yes - to HDF Yes Yes Yes 5

GPCP Data Native No No Yes Yes 7

GPCC Data Native No No Yes No 7

AVHRR
Global
Analyzed Field

Binary Direct
Access I/O

No No Yes No 4

Snow/Ice
Cover (EDR)

Intermediate
Database

Yes - to HDF Yes Yes No 4

AVHRR
Weekly
General
Vegetation
Index

Binary Raster
Data

No No Yes No 4

TOMS Gridded
Ozone

HDF No No Yes No 8

SAGE-II
Stratospheric
Optical Depth

HDF No No No No metadata
exists

6

SAGE-II
Stratospheric
Ozone

HDF No No No No metadata
exists

6

ISSCP
DX,D1,D2
radiances

TBR No No No No 6

SSM/I Level 1b Native No No Yes Yes 7

Layer/Level
Ozone

Native No Yes Yes No 4

Table 4.5-3. Release-A Ingest Data Type Preprocessing Requirements (2 of 2)

4-140 305-CD-025-002

Metadata Extraction: The necessity for metadata extraction depends on each individual data
type. Landsat 7 Level 0R data does not require metadata extraction since a separate Landsat 7
metadata file is provided. NMC GRIB data requires metadata extraction since the metadata and
science data are provided within one physical data file. SDPF Level 0 data provides some metadata
in a separate file (Detached SFDU Header) while other metadata (Data Set File Header(s)) are
embedded within the science data set file. TSDIS HDF metadata is contained in an separate HDF
object from the TSDIS science data. HDF tools will extract the metadata objects from the TSDIS
HDF files. TSDIS SFDU metadata is organized in a similar format to the SDPF metadata. The
necessity for extraction and information, related to where the metadata resides within a physical
file, can be found in the appropriate InSourceMCF and InFileTypeTemplate objects.

Conversion: The implementation of conversion services will depend on the initial format of the
data type and the targeted archive format. Currently, the three main ingest formats which have been
identified for ECS Release A ingest are the: Standard Format Data Unit (SFDU), Hierarchical Data
Format (HDF), and Gridded Binary (GRIB). Since HDF is a standard archive format, data
conversion from HDF to other formats during the ingest process is not foreseen. SDPF SFDUs
(CERES and LIS) will not be converted since the instrument teams will prepare algorithms to
process SFDUs as is. TSDIS Level 1A will remain in SFDU format since the TSDIS and ESDIS
Projects have jointly determined that it is not efficient or necessary to convert this data to HDF.
The lack of efficiency stems from processing complexities with converting TSDIS Level 1A SFDU
data into HDF. The lack of necessity is due to TSDIS Level 1A data not being widely distributed
to the User community, and therefore a common format such as HDF for this data is not imperative.

An analysis of external ancillary data sets required by the instrument teams has been performed.
The result of this analysis was a project directive mandating that only datasets and/or formats
required by multiple teams are to be considered for the development of ancillary data reformatting
and conversion capabilities. NMC GRIB data and, SSM/I snow and ice products, meet this criteria
and therefore will be reformatted and converted as needed. NMC GRIB data will require data
conversion to HDF-EOS. The detailed design for the NMC GRIB conversion is in progress and
will be reported upon post-Release B CDR. TOMS Gridded Data already exists in HDF. SSM/I

Table 4.5-4. Release-B Ingest Data Type Preprocessing Requirements

Data Set(s) File Format Convert Reformat Field/Range
Checking

Metadata
Extraction

NCEP Global
4D
Assimilation

GRIB TBR TBR Yes Yes

NCEP
Reynolds
Blended SST

GRIB TBR TBR Yes Yes

Brightness
Temp Product
from AMSR

TBR TBR TBR TBR TBR

NOAA POES
HIRS/2 Total
Ozone
Concentration

TBR TBR TBR TBR Yes

4-141 305-CD-025-002

snow and ice products are currently being analyzed. Other CERES ancillary data, GPI, GPCP data
will not be converted.

Reformatting: The Ingest Preprocessing CSC will perform reformatting to alleviate
inconsistencies in data representations from different external computer systems (e.g., data type
definitions, byte ordering, and character representation). HDF data does not have to be reformatted
since HDF is a portable file format. An HDF file created on one computer system can be easily
read on another computer system without modification. SFDU data will not be reformatted since
the data is defined in a byte by byte format. GRIB, and SSM/I Snow and Ice Cover will be
reformatted as part of the conversion process.

Metadata Checking: Metadata checking will be performed to verify that certain metadata fields
exist in the correct form and that the value of certain fields are within limits. The extent of metadata
checking will depend on each data type. The Preprocessing CSC performs some or all of the
following field and range checks for metadata on a ingest data type by data type basis:

a. Field Checking. Verifies all required metadata parameters exist and that the metadata
parameters use correct syntax.

ECS has defined a set of "core metadata" which will be supplied for ECS products. This
core set of metadata parameters define the minimum metadata which can be supplied for
an ECS product. The core metadata will also dictate a specific format and syntax for each
parameter. Metadata for a specific data type will have the minimum or core set of metadata
and optional metadata data type unique fields. Some data types (e.g., external ancillary
data, Level 0 data, Version 0 data) may not be required to meet these core metadata
requirements. Level 0 data may not be required to contain this core metadata since it will
not be widely accessed by the user community. External ancillary data and V0 migration
data may have existing metadata standards and heritage metadata. This does not preclude
other subsystems within ECS from generating core metadata for the external ancillary data
sets and V0 migration data sets.

The Preprocessing CSC will determine the required metadata parameters for a specific data
type through interaction with the Data Server Subsystem. The Data Server Subsystem
supplies a target metadata configuration file dictating the required parameters for the
specified data type. A scenario illustrating the full metadata field checking process is
included in Table 4.4-10.

b. Range Checking. Verifies for selected metadata parameters, that parameter values lie within
a specified range or that the parameters are within a set of discrete values (valid options).
The purpose of range checking is not to flag values that may have relevant scientific values
outside the normal range of values but to flag fields with values outside of possible range
limits or not in a set of possible discrete options. Default values for some selected metadata
fields may be inserted when a value is missing.

The Preprocessing CSC will rely on the Data Server Subystem for validation of metadata
files. The Preprocessing CSC will first convert the input metadata into a final PVL
metadata file and then utilize data server validation services.

4-142 305-CD-025-002

c. Byte Checking: In some cases the metadata provided with a specific science data type will
indicate the size of the science data packet or file. In this case, the InDataPreprocessTask
Class will check that the size of the packet/file is within a certain tolerance.

d. Time Range Checks: Time information in metadata will be checked and translated to the
ECS standard format as necessary.

Ingest Unique Metadata: All data types will have ingest unique metadata appended to their
original metadata. This ingest unique metadata consists of time of ingest and a quality flag.

4.5.6 Operator Ingest Interface CSC

The Operator Interface CSC provides operations personnel with the capability, via the GUI
Interface, to perform physical media ingest; to monitor the ingest history log; to monitor the status
of ongoing ingest requests; to update (i.e., cancel, suspend, resume, and change priority) an ingest
request and to modify Ingest configuration parameters (tunable parameter). The CSC is comprised
of the GUI Interface, InGUISession, InIngestMain Window, InMediaIngest, InMediaCheckIn,
InHistoryLog and InRequestController object classes. The CSC is initiated as a set of GUI screens
with associated software to process GUI input when authorized operations personnel select any of
the defined operator service options from the GUI screens. This CSC corresponds to the "Ingest
Subsystem Administration Application" CSC described in the SDPS System Design Specification.
The Operator GUI Interface contains different screens associated with each operator task. From
the GUI screen, the operations personnel select the desired task to be processed and enter the
information needed for building the request for the task. The GUI Interface makes sure that all the
required fields are properly filled by the operations personnel. If all required fields are indeed
properly filled, the GUI Interface invokes the appropriate services provided by this CSC to fulfill
the task.

The InMediaIngest, InHistoryLog, and InRequestController object classes are derived from the
InIngestMainWindow objects class. This means that all of these object classes inherit the data and
service members from the InIngestMainWindow object class.

The InMediaIngest object class provides services to perform physical media ingest. The object
class performs privilege check on both the operations personnel and the media provider. The
object class interfaces with the operations personnel via the GUI Interface. A DAN (or “Media
Delivery Record”) must be supplied with each piece of media. The DAN describes the contents of
the media.

The InMediaCheckIn object class maintains a list of tapes which the operator has “checked in” for
subsequent processing. This class is provided to allow the operator to check in tapes as they arrive
via mail or courier. The operator can thereafter, refer to the MediaCheckIn GUI display to
determine which tapes are currently being processed and which tapes remain to be processed. (The
History Log class described below, will provide the operator information on completed tape ingest
request).

The InMediaCheckIn class allows the operator to utilize a bar code reader (where available) to
supply the type ID or to manually type in the tape ID via a GUI screen.

The InHistoryLog object class provides services to monitor Ingest History Log (an alias for Data
Receipt Log). The service allows the operations personnel to specify the search criteria for the
Ingest History Log entries for viewing based on 1) ingest start/stop date and time, 2) data provider

4-143 305-CD-025-002

ID, 3) data set name, 4) final request status, and 5) ingest type. The InHistoryLog object class is
responsible for gathering the search criteria information input by the operations personnel via the
GUI Interface and interfaces with the InRequestSummaryHeader and InRequestSummaryData
object class to display the Ingest History Log. The InRequestSummaryHeader and
InRequestSummaryData object class is defined in the Ingest Administration Data CSC; refer to
that CSC for details.

The InRequestController object class provides service to monitor and control the ongoing ingest
requests. Authorized operations personnel are allowed to view all or selective ingest requests in
the system, whereas a less privileged user can view only the requests that are owned by the
individual. The service allows the operations personnel to select Ingest Requests for monitoring
based on: 1) data provider ID, and 2) ingest request ID, or the operator can request to monitor all
requests. The object class is responsible for gathering the search criteria information provided by
the operations personnel via the GUI Interface and interfaces with the InRequestProcess Header
and InRequestProcessData to get the results. The object class is responsible for detecting requests
where the specified expiration data/time has been exceeded. In that case the operator is alerted at
the GUI screen. Refer to the Ingest Request Processing CSC for details on the two object classes.

In addition to monitoring capabilities, the InRequestController object class provides service to
update an ongoing ingest request. The updates include change priority, cancel, suspend, and
resume. The object class is responsible for reading in from the operations console the update
specification (e.g. change priority, cancel) and the request (or requests) to update. It interfaces with
the InRequestManager object class to locate the request on which the update is to be performed.
Refer to Ingest Request Processing CSC for details on the InRequestManager object class.

Finally, the InRequest Controller Class allows the operator to modify data base stored parameters
affecting the functioning of the Ingest system. These parameters include all of the Ingest tunable
parameters discussed in Section 3.2.5.2 and the data server URs discussed in Section 3.2.4.2.

Figures 4.5-6, 4.5-7, and 4.5-8 provide a pictorial overview of the Media Ingest, the Administrative
Viewing, and the Request Cancellation processing respectively. The Administrative Viewing
diagram (Figure 4.5-7) describes History Log Monitoring and Request Status Monitoring GUI
interfaces in a very generic fashion because of the similarity in their processing--both interface
accesses the Ingest DBMS to generate a report for display based on the entries queried from the
database.

4-144 305-CD-025-002

Figure 4.5-6. Media Ingest Capability of the Operator-Ingest Interface CSC

Figure 4.5-7. Request Monitoring Capability of the Operator Ingest Interface CSC

Figure 4.5-8. Request Control Capability of Operator Ingest Interface CSC

InMediaIngest
4

Proxy client for
CreateSession,
DAN and DDA
RPC services

Media Ingest is
selected

InResourceIF

7

Download
files from Media

8

Submit Request
for Processing

Notify Operator of Request
Completion via Email and via

GUI Request Control Monitor Screen

6

= Standalone Process

= Library

Legend:

Access DAN
(From tape or disk)

9

Ingest
DBMS

5 Obtain Tape Data
From ChechIn List

InMedia
CheckIn

Update

10
Add Tape
to Check In

List

3

2

Tape Bar Code
Reader Accessed

TapeCheckIn
Selected

1

InRequest
Manager

1

Accept Ingest Administrative
 monitoring request

2

Query the DB for
Request Information

= Standalone Process

= Library

Ingest
DBMS

Ingest
Session

3

Return
Results

Legend:

Invoke CancelTransfer
Cancel Transfer, Suspend Transfer
Service if Req. is in
Transferring State

InGUISession

1
Suspend, Resume, Cancel

or Change Priority

5A

Display completion status

3

Query the entry
from DB

= Standalone Process

= Library

Ingest
DBMS

InRequestManager

 Search for request based
 on specified criteria

2

InData
Transfer InData

Preprocessing

InData
Insertion

InRequest

Invoke CANCEL, Suspend,
Resume, or Change Priority
Service to Perorm
Request Controll

Invoke CancelPre-
process service if req.
is in Preprocess state

Invoke CancelInsert
service if req. is in
Insertion state

5B

5C

46

= Pthread

Legend:

4-145 305-CD-025-002

4.5.7 Interactive Ingest Interface CSC

The Interactive Ingest Interface CSC provides ECS science users and ECS operators with the
capability to interactively request the ingest of network accessible data into ECS. In particular, this
Interactive Interface allows the ECS operator to ingest Digitized Document Files produced by the
Ingest Digitizing/Scanning COTS product. For such ingests, the operator will be prompted for
metadata information necessary for later reproduction or viewing of the digitized/scanned product.
In Release A documentation and at Release B IDR, the Interactive Ingest Interface CSC was
referred to as the User Network Ingest Interface CSC.

ECS science users can, via this interactive interface, request the status of their ongoing ingest
request. The ECS operator can choose to view request status via this interface or via the Operator
Ingest Interface. The CSC is composed of an HTML Forms Interface, the InInteractiveIngest, and
the InRequestProcessHeader object classes. The CSC is initiated when the user selects ECS Ingest
Interactive Interface on the World Wide Web (WWW). This CSC corresponds to the "Ingest
Preparation Toolkit" CSC described in the SDPS System Design Specification.

The HTML Interface consists of HTML Forms, customized to science or document data which
allows users to interactively fill in information needed for building the interactive ingest request or
the status monitor request. The HTML Interface makes sure that all the required fields are properly
filled by the user. If all required fields are properly filled, the HTML Interface invokes the
appropriate services provided by the InInteractiveIngest or the InRequestController object class to
fulfill the request. The Interactive Ingest Interface CSC provides multiple ways in which the user
can specify data sets for ingest. The user can select the HTML form supported method which best
suits the data set(s) to be ingested. The user can choose to: 1) specify the directory or directories
where one or more data sets reside. The Ingest software will consider all files in a directory as a
single data set. Note that valid ECS controlled directories are pre-established and user/datatype
dependent; 2) specify a single directory where one or more data sets reside. The Ingest software
will separate the files in this directory into multiple data sets using the following file naming
convention; all files with the same base file name will determine a data set. (That is, all files within
a data set have file names that only differ in the file extension.) It is assumed this method will be
useful for ingesting documents with associated ASCII metadata files; 3) interactively specify one
or more file names/locations which identify one or more data sets [interactively build a Data
Availability Notice (DAN) file]; 4) specify the name and location of a DAN file containing data
set file description. Note that for security purposes the DAN file must be located in an ECS
controlled pre-established directory allocated to the requesting user. In all but the DAN method,
the user will be prompted to supply a valid ECS data type ID for the data set(s) plus a file type for
each file in the set. From the user provided information, the Interactive Ingest Interface software
will create a DAN file, validating that all pertinent information has been supplied. The user can
then choose to ingest the data set(s) or choose to use the created DAN file at some later time to
request an ingest (e.g. as input to an operator hard media Ingest session.)

Figure 4.5-9 provides an pictorial overview of the Interactive Ingest processing when the user has
chosen to specify the directory location of a collection of files making up a single data set. The
diagram depicts how a user would ingest data files into the ECS system using HTML Forms.
Before invoking the Ingest Form Script defined in InInteractiveIngest object, the fields in the
Request Form will be parsed by the HTTP daemon. Upon invocation, the Ingest Form Script will
package the Request Form fields into a DAN message and then send the message to ECS Ingest

4-146 305-CD-025-002

(InRequestManager object) for processing. The InRequestProcessHeader object class provides
services for the user to view the state of the user ongoing ingest request. The user is authorized to
view only the requests that are owned/submitted by the user. This object class is defined in the
IngestRequestProcessing CSC.

As Figure 4.5-9 indicates, the user is required to transfer the files (data sets or the DAN file
describing the data sets) into ECS controlled directories prior to initiating the HTML Interactive
Ingest Session. Figure 4.5-10 provides a sample directory structure for the controlled directories
(KFTP or copy). Only valid users will have write access to these directories.

Figure 4.5-9. Interactive Ingest Interface CSC

Figure 4.5-10. Sample ECS User Ingest Directory Structure

DISK SPACE
AVAILABLE

HTTP DAEMON

INGEST FORMS
SCRIPTS

IN REQ UEST
MANAGER

External User
KFTPs/Operator

Copies Files
to Appropriate
ECS Control
Directories

1
2 User/Operator

AccessesIngest Request
Form via WWW

User/Operator
Selects Directory

4

Store
DAN on

Disk

8

Process Directory, Build
F ile-Type Specificati on Form,
Display and Process

5

Validate User

3

Buil d DAN
Request

7

Submi t Request
for Processing

9

Supply Via Form
Additional File Type

Specif icat ionInformation

6

Notify User
Vi a E-Mail of

Request Complet ion
(Include Status)

Store DAN status (DDN) in
user directory space

for HTML viewing

specif ication for
data set(s) method

/.: ECS _User_Ingest

User 1 User 2 User 3

DataDir1 DataDir2 DataDir3

DataSetF iles TemporaryErrorDir DANInput DAN_DDN_Output

File1

File2

File3

Fi le n

4-147 305-CD-025-002

Once the Ingest is completed, data sets which have been successfully archived will be deleted by
Ingest InRequest software. If a data set failed to be archived, InRequest will rename the files into
a temporary error directory. The user will be able to replace files with errors and then resubmit the
Ingest Request. InRequest object will create a Data Delivery Notification (DDN) file for both
successful and non-successful Ingests. The DDN will be available for viewing via the HTML
Interface. The InRequest object is defined in the IngestRequestProcessing CSS.

4.5.8 Ingest DBMS CSC

The Ingest DBMS CSC is responsible for storing and providing access to Ingest Subsystem
internal data. The CSC is composed of an OTS Data Base Management System (DBMS). In
particular, the DBMS stores the Ingest operations data bases -- Ingest History Logs and Ingest
request checkpoint state, and template information. Those data bases are configured in the Ingest
Administration Data CSC, which is described in the following paragraph. This CSC corresponds
to the "Subsystem Administration DBMS" CSC described in the SDPS System Design
Specification.

4.5.9 Ingest Administration Data CSC

The Ingest Administration Data CSC table descriptions of administrative information for the Ingest
operations data bases are maintained by the Ingest DBMS. Stored procedures used to manage the
tables are also provided by this CSC. The Ingest operations data bases are described at a high level
in section 4.6.1.4 and at a more detailed level in the object model in Section 4.3. The CSC
interfaces with MSS to allow generation of production reports. Refer to Section 4.6.3 for a
description of proposed production reports and to the MSS volume of this document for a
description of associated MSS event logs.

4.5.10 Peripherals CSC

The Peripherals CSC described in the SDPS System Design Specification is entirely reused from
the Peripherals CSC software described in the Data Server Subsystem volume of this document.
That CSC provides common access of the Distribution and Ingest Peripheral Management HWCI
(DIPHW, as described in volume 9 of this document) for ingest and distribution purposes. The
Peripherals CSC is configured on the DIPHW CSCI.

4.5.11 Viewing Tools CSC

The Viewing Tools CSC described in the SDPS System Design Specification is entirely reused
from the visualization and other client tools described in the Client Subsystem volume of this
document. Viewing capabilities are provided only for ingested data (i.e., only for data already
converted/reformatted into forms accessible by standard ECS viewing tools). Data that is not
converted/reformatted into a form accessible by standard ECS viewing tools are not available for
viewing or other analysis within the Ingest Subsystem. The Viewing Tools CSC is configured on
the Ingest Client HWCI (ICLHW) administration workstation component or by means of
x-terminal access of the Ingest Client host.

4-148 305-CD-025-002

4.5.12 Data Storage Software CSC

The Data Storage Software CSC described in the SDPS System Design Specification is entirely
reused from the CSCs comprising the Science Data Server (SDSRV) CSCI and Storage Resource
Management (STMGT) CSCI described in the Data Server Subsystem volume of this document.
Those CSCs provide for reliable storage and retrieval of the Level 0 (L0) data in the same fashion
as for other data products. No additional Ingest Subsystem software is required to support L0 high-
reliability data storage and subsequent access. The Data Storage Software CSC is configured on
the Ingest Client HWCI (ICLHW) host component for Level 0 data ingest.

4.5.13 Resource Administration CSC

The Resource Administration Application CSC described in the SDPS System Design
Specification is entirely reused from the administration CSCs comprising the Science Data Server
(SDSRV) CSCI and Storage Resource Management (STMGT) CSCI described in the Data Server
Subsystem volume of this document. Those CSCs provide for operations staff monitoring and
control of storage components. No additional Ingest Subsystem software is required to support L0
high-reliability data storage and subsequent access. The Resource Administration CSC is
configured on the Ingest Client HWCI (ICLHW) administration workstation component (or
accessed by x-terminal from the Ingest Client host) for Level 0 data ingest.

4.5.14 Client Interfaces CSC

The client CSC is entirely reused from the Science Data Server (SDSRV) CSCI described in the
Data Server subsystem volume of this document. That CSC provides public objects/services to
perform data granule insertion. The Client CSC is configured on the Ingest Client HWCI
(ICLHW) host component for Level 0 data ingest.

4.6 Ingest CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

4.6.1 System Management Strategy

The Ingest CSCI is designed to provide robust ingest services to external data providers.
Specifically, the design goal of the Ingest CSCI is to always return status (successful or
unsuccessful) for every received ingest request. To accomplish that goal, the Ingest CSCI follows
ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery;

• Ingest operations data bases.

4.6.1.1 Ingest Startup/Shutdown

As described in the MSS volume of this document, MSS provides life-cycle services for system
startup and shutdown. The Ingest subsystem fully uses those services.

4-149 305-CD-025-002

At system startup, the Ingest InServer object, the InRequestManager object, and the
InGranuleServer_S object are instantiated as standalone processes. In addition, data base tables
corresponding to the InRequestProcessHeader, InRequestSummaryHeader,
InRequestProcessData, InRequestSummaryData, and InRequestFileInfo are set up prior to the
initial system startup.

The InGranuleServer_S process is instantiated on one or more processes as described in
section 4.5.3, Ingest Request Processing.

InServer, InRequestManager, and InGranuleServer_S are “object factories” which create objects
as separate pthreads as ingest requests pass through the ingest system. Refer to section 3.2.3.1 for
a detailed discussion on object factories.

When Ingest processes are started, they check for the existence of checkpointed information. If
such checkpointed information is available, the Ingest process will restore the information and
continue processing. Note: there is a tunable time limit after which checkpointed information
will not be restored. Additional checkpointing strategy is discussed in section 4.6.1.3.

4.6.1.2 Error Detection and Reporting

As described in the CSS and MSS volumes of this document, CSS and MSS jointly provide event
logging services for logging and reporting errors and faults, and for browsing error/status logs. The
Ingest subsystem fully uses those services. Errors detected in the processing of the InRequest
object are identified in Table 4.6-1, which shows critical errors reported and the actions (including
operations personnel actions) taken.

Errors/status may be reported in two error logs. MSS maintains the first log, the MSS event log.
It contains errors/status of interest to operations staff to evaluate system status and to perform trend
analysis. The Ingest subsystem maintains the second log, the Ingest event log. The Ingest event
log contains selected errors/status from the MSS event log (for context) plus highly-detailed debug
events. Software maintenance personnel use the Ingest event log to diagnose system and software
problems in response to trouble tickets.

Table 4.6-1. Ingest Subsystem Error Categories (1 of 3)

Error Category Actions to Be Taken

Metadata Validation Failure In general, log errors to the event log and return status to
the external data provider. Operations staff evaluate errors
off-line and request re-ingest after corrections

Dependent on preprocessing templates (instituting DAAC
policy), continue with preprocessing and insertion of data
into the data server subystem in a special data type
category, "INCOMPLETE" (with metadata quality set to
"UNVALIDATED"). Flag Metadata indicating that the
metadata was not validated. Operator action and source
facility notification required. Log errors to the event log and
return status to the external data provider. Operations staff
evaluate errors off-line and request re-ingest as necessary

Target/Source MCF Mismatch Failure Same as above. Operations staff are alerted that
preprocessing templates are out-of-synch. Operations staff
develop a trouble ticket to correct the mismatch

4-150 305-CD-025-002

Error Category Actions to Be Taken

Data Type Policy Failure:No Metadata Log errors to the event log and return status to the external
data provider. Operations staff evaluate errors off-line and
request re-ingest after corrections

Data Type Policy Failure: Incomplete set of
Files, Metadata exists

In general, log errors to the event log and return status to
the external data provider. Operations staff evaluate errors
off-line and request re-ingest after corrections

Dependent on preprocessing templates (instituting DAAC
policy), continue with preprocessing and insertion of data
into the data server subystem in a special data type
category, "INCOMPLETE" (with metadata quality set to
"UNVALIDATED"). Flag Metadata indicating that the
metadata was not validated. Operator action and source
facility notification required. Log errors to the event log and
return status to the external data provider. Operations staff
evaluate errors off-line and request re-ingest as necessary

Data Type Policy Failure: Unknown Data
Type

Log errors to the event log and return status to the external
data provider. Operations staff evaluate errors off-line and
communicate with external data provider. (Note: all data
sets to be ingested must be pre-authorized by DAAC
personnel. Ingest and Data Server setup is required before
ingest and archive can occur)

Data Type Policy Failure: Unknown File
Type.

Same as above

File Type Failure In general, log errors to the event log and return status to
the external data provider. Operations staff evaluate errors
off-line and request re-ingest after corrections

Dependent on preprocessing templates (instituting DAAC
policy), continue with preprocessing and insertion of data
into the data server subystem in a special data type
category, "INCOMPLETE" (with metadata quality set to
"UNVALIDATED"). Flag Metadata indicating that the
metadata was not validated. Operator action and source
facility notification required. Log errors to the event log and
return status to the external data provider. Operations staff
evaluate errors off-line and request re-ingest as necessary

Operations staff are alerted that preprocessing templates
are out-of-synch. Operations staff develop a trouble ticket
to correct the mismatch

Unable to archive data Internal Data Server fault. Log errors to the event log and
return status to the external data provider. Report alert to
operations staff. Operations staff evaluate errors off-line
and request re-ingest as necessary

Unable to read peripheral media Internal Data Server fault. Log errors to the event log and
return status to the external data provider. Report alert to
operations staff. Operations staff evaluate errors off-line
and request re-ingest as necessary

Unable to transmit data ingest coordination
messages

After a system-tunable number of retries, log errors to the
event log. Report alert to operations staff. Operations staff
evaluate errors off-line to evaluate and correct
communications network problems

Table 4.6-1. Ingest Subsystem Error Categories (2 of 3)

4-151 305-CD-025-002

4.6.1.3 Fault Tolerance and Error Recovery

Once an ingest request is accepted from an External Data Provider, the ECS policy is to complete
request processing and return status (successful or unsuccessful) to the External Data Provider.
Therefore, upon creation of the InServer, InSession, InRequestManager, InRequest, and
InGranuleAsync_S objects, their critical attributes are checkpointed to a COTS data base. After a
process or system failure, the checkpointed attributes are automatically restored to the last
checkpointed state and processing continues. Note: there is a tunable time limit after which
checkpointed information will not be restored.

Data bases for InServer/InSession, and InRequestManager/InRequest are checkpointed only when
a session or request, respectively, changes its fundamental state. Any change to state that does not
invoke checkpointing is defined as a "substate."

The InServer object has two fundamental states--"Session Created" and "Session Deleted." The
InServer object is checkpointed after each InSession object is created (storing session ID) and after
each InSession object is deleted (deleting session ID). The InServer object has two substates--
"Active" (at object creation) and "Inactive" (at object deletion) that are not checkpointed.

The InSession object has three fundamental states--"Active", "Request Created", and "Request
Deleted." The InSession object is checkpointed immediately after it is created (storing information
about the connection with the external data provider); after a InRequest object is created (storing
the request ID); and immediately after the InRequest object is deleted (deleting request ID).

The InRequest object has seven fundamental states -- “Active”, “Suspended”, “Cancelling”,
Cancelled”, and “Resuming”, “Complete” and “Complete with Errors”. The InRequest object is
checkpointed to “Active” when created by InRequestManager. The InRequest object is
subsequently checkpointed to “Suspending”, “Cancelling”, or “Resuming” when and operator
command is received to suspend, cancel, or resume, respectively. Once all granules within the
request have been suspended, cancelled, or resumed, the InRequest object is checkpointed to
“Suspended”, “Cancelled”, or “Active”, respectively. Note: while a request is suspending,

Error Category Actions to Be Taken

Unable to transfer data to be ingested After a system-tunable number of retries, log errors to the
event log and return status to the external data provider.
Report alert to operations staff. Operations staff evaluate
errors off-line to evaluate and correct communications
network problems

Unable to allocate disk space Allocation request is queued by Data Server and satisfied
when disk spare becomes available. Allocation requests
exceeding DAAC specific limits will be rejected by the
STMGT CSCI. Log failures to the event log and return
status to external data providers. Report alert to operations
staff. Operations staff evaluate errors off -line and request
re-ingest as necessary

Unable to set up external data provider
session

Limit exceeded for allowable number of external data
provider sessions. Log errors to the event log and return
status to the external data provider, indicating that the
session connection should be re-attempted later. (Note:
based on the modeled transaction load, this error condition
is expected to occur very rarely, if at all)

Table 4.6-1. Ingest Subsystem Error Categories (3 of 3)

4-152 305-CD-025-002

cancelling, or resuming, all additional operator state change requests will be refused. At
completion the request is checkpointed as “Complete” or “Complete with Error” as appropriate.

InGranuleAsync_S objects have seven states -- “Active”, “Transferred” “Preprocessed”,
“Inserted”, “Transfer Failed”, “Preprocess Failed” and “Insert Failed”. InGranuleAsync_S object
in the Active State have additional checkpointing at granule file level -- “File Not Transferred”,
“File Transfer Failure”, and “File Transferred”.

The above checkpointing allows for the recovery of requests after a process or system failure.
Granules not completing ingest prior to the failure will be resumed following last successful
checkpoint. Ingest will checkpoint when a granule recovery is attempted. If a process or system
failure occurs again during the recovery, Ingest will not attempt to recover the granule a second
time.

Failure scenarios with recovery methods:

1) Failure of the InServer object. This process is restarted by MSS Process Framework
services as a Unix standalone process. The list of active session IDs is restored from its
checkpointed state. Corresponding InSession processes are restarted if they were disabled.
Prior to restart, no External Data Providers may set up new connections (connection
requests are rejected). Prior to restart, InSession objects that have completed all
interactions with an External Data Provider are blocked from terminating.

2) Failure of an InSession object. The InServer process detects the failure via a system signal.
InServer creates a new InSession object that communicates with the External Data Provider
and with the submitted InRequest based on the checkpointed list of request IDs (OODCE
OID). Prior to restart, the External Data Provider application may time out. The InRequest
object that has subsequently completed is blocked until the InSession object is restored. No
other ingest sessions that have not failed are affected.

3) Loss of the data base tables used for checkpointing. The data base management system
(DBMS) automatically checkpoints transactions to allow restorations of table information.
In the event of a hard disk failure/DBMS failure, the InRequest object detects the failure,
and reports a request failure condition to the InSession object. Since RAID-1 (mirrored
disks) are used, this failure should occur very rarely.

4) Failure of InRequestManager. All associated InRequest pthreads are terminated. The
InRequestManager process is restarted as a Unix standalone process. The identifiers of
InRequest objects are restored from checkpointed information. The InRequestManager
recreates the InRequest objects and they continue processing from their latest checkpoint
(see the next scenario).

5) Failure of individual InRequest pthreads. The InRequestManager process detects the
failure and creates a new InRequest object that communicates with the originating
InSession object based on the checkpointed request ID (OODCE OID).
InGranuleServer_S and InGranuleAsync_S objects will not be affected. The InRequest
object will recreate (using checkpointed SRF provided object URs) corresponding
InGranuleServer_C object for active InGranuleAsync_S objects. Messages from server
objects are queued during the time the client objects are down and are processed once the
object is re-created. No other ingest requests that have not failed are affected.

4-153 305-CD-025-002

6) Failure of an InGranuleServer process. All associated InGranuleAsync_S objects
(pthreads) are terminated. The InGranuleServer_S process is restarted as a Unix standalone
process. InGranuleServer process recreates all InGranuleAsync_S objects and based on
checkpoint information, continues processing from point of failure.

7) Failure of individual InGranuleAsync_S pthread. The InGranuleServer_S object will
recreate the failed InGranuleAsync_S pthread and restart processing from point of failure.

8) Failure of the processor on which an Ingest process is running. In general, operations
personnel restart the processor. Restart of individual processes is handled as a combination
of one or more of the above process restarts. If the processor is disabled, the disablement
is detected by MSS SNMP services and, where available, a backup processor is restarted.
The backup processor has full access to the data base tables used for checkpointing and has
an identical network address to that of the primary processor. Again, restart of individual
processes is handled as described above. Note: in the Ingest subsystem a backup processor
is generally provided only in the case of Level 0 data ingest, where a separate set of Ingest
Client processors is provided for high availability.

9) Failure of the External Data Provider application. After a given number of retries to
transmit the Data Delivery Notice (DDN), operations staff are notified by means of an alert
message. The Data Delivery Acknowledgement (DDA) is simulated for InSession, which
exits normally. The DAAC operations staff will coordinate with the External Data
Provider operations staff to diagnose the failure.

10) Network failure for the connection with the External Data Provider application. Same
as 9).

4.6.1.4 Ingest Operations Data Bases

The Ingest CSCI maintains three types of operations data bases:

• Ingest checkpoint history logs

• Ingest template information

• Ingest configuration information

Ingest history logs contain detailed and summary information about ingest request status. The two
types of information are complementary and fulfill different operational requirements. Both types
of information are stored in a COTS data base management system.

The detailed information is used to restore system state after a process or system failure as
described above. Selected information (e.g., active request IDs, request state) is available for
display of status on ongoing requests. The detailed information is deleted when processing for a
request is complete. In the object class descriptions in Section 4.3, classes InRequestProcess Data,
In RequestProcessHeader, and InRequestFileInfo contain the detailed information.

The summary information is used to maintain longer-term summary statistics on ingest processing.
Selected information (e.g., request IDs, data volume ingested, number of data granules
successfully/unsuccessfully ingested) is available for display. The summary information is
updated during ingest request processing and maintained after request processing is complete.
Summary information is deleted periodically based on DAAC operational policy. In the object

4-154 305-CD-025-002

class description in Section 4.3, classes InRequestSummaryHeader and InRequestSummaryData
contain the summary information.

Ingest template information is stored by sustaining engineering personnel to implement data-
specific functions. Sustaining engineering personnel are responsible for entering and updating
templates that guide ingest data processing. Separate templates are implemented for data type
information, file type information, and metadata configuration information. In the object class
descriptions in Section 4.3, classes InDataTypeTemplate, InFileTypeTemplate, and InSource
MCF contain template information.

Ingest configuration information includes parameters for ingest thresholds (e.g., maximum number
of requests to concurrently process maximum data volume to concurrently process, number of data
transfer retries) allow operation personnel to throttle ingest processing and the flow of data into site
Data Servers. InExternalDataProviderInfo controls the registering of threshold parameters with
Managed Process Framework as the Ingest InRequestManager Process is initialized. Operations
personnel are responsible for updating these parameters as necessary to fine tune the Ingest system
performance. Refer to Section 3.2.4.7, Performance and Accountability Reporting, for more
details.

Ingest configuration parameters also include the tunable parameters referenced in Section 3.2.5.2
(e.g., number of data retries, time limit completed request remain on the operator monitor screens).
The InExternalData ProviderInfo and InSystemInfo objects contain the tunable parameters.

Operations interfaces to the operations data bases are discussed in section 4.6.2. Additional uses
of the operations data bases are discussed in Section 4.6.3. Sustaining engineer interfaces to the
operations data bases are discussed in Section 4.6.4.

4.6.2 Operator Interfaces

The Ingest GUI interface provides a collection of GUI components through which privileged users
(e.g., operator) can access services in ECS Ingest. The Ingest GUI interface is categorized into
three groups: Administration, Media Ingest, and Interactive Ingest.

The Administration interface provides operations personnel with the capability to monitor and
control all of the Ingest activities in the system. The interface is composed of three GUI screens.

The first Administration interface is Request Control, which allows operations personnel to
monitor and control ongoing request processing states based on the specified criteria. Operations
personnel can use this same GUI interface to delete, cancel, suspend or resume requests. The
second Administration interface is Ingest History Log Viewing. The History Log provides a
summary of Ingest activities that have happened. The log entries can be queried through a
selection of criteria.

The Media Ingest interface allows operations personnel to perform physical media Ingest. The
types of media supported in physical media ingest in Release A are 4mm tape, and 8mm tape.
Release B additional media types (e.g., for ASTER LIA/LIB ingest) are TBD.

The Interactive Ingest interface allows privileged users to electronically ingest data into the ECS
system. The Interactive Ingest Interface provides multiple ways in which the user can specify data
sets for ingest into ECS. Refer to Section 4.5.7, Interactive Ingest Interface CSC for details.
Science data and document data are expected to be ingested via this interface. In addition to the

4-155 305-CD-025-002

ingesting service, the Interactive Ingest Interface provides users the capability to view the status
of submitted ingest requests. This service allows users to find out the processing state of a
previously-submitted request.

The third Administration GUI interface is the Ingest Tool interface. It provides operator access to
the UR update tool referenced in section 3.2.4.2, Universal Reference/Advertising and a means to
update Ingest Tunable parameters (e.g., Ingest Polling internal, Ingest request priority). See
Section 3.2.5.2, Tunable Parameters for a complete list of Ingest Tunable parameters. The UR
update tool should be executed only at initial Ingest System setup and when Data Server URs have
changed. It is anticipated that URs will change infrequently. Operations should be notified in
advance of a UR change so that the UR update tool can be executed. If prior notification is not
received, the operator will be notified by the Ingest software that URs are invalid and that the UR
update tool should be run.

In addition to the Ingest Administration, Media Interactive, and Operator Interfaces, the operator
can, via the MSS provided interface, view and update Ingest thresholds parameter values. These
thresholds consist of 1) the maximum allowed Ingest Request to be processed concurrently, 2) the
number of transfer retry attempts when network failure occurs, 3) the Polling timer indicating how
long to wait before starting the Ingest Polling, and 4) the maximum allowed data volume to be
processed concurrently.

All of the Ingest GUI interfaces will be implemented based on the "ECS User Interface Style
Guide" document. The document defines standards for the ECS User Interface design and
implementation. The intent of using the guide for GUI development is to help ensure that ECS has
a consistent and common look and feel user interface system wide.

The Administrative and the Media Ingest interfaces will be developed in X-Windows/Motif. The
Interactive Ingest service will be developed in HTML.

DID 605, Operation Scenario for the ECS project (605-CD-002-001) describes and illustrates all
of the Ingest GUI screens for Administration and Media Ingest.

Table 4.6-2 provides a summary of all Ingest HTML forms for the Interactive Ingest Interface.

4.6.3 Ingest Production Reports

In addition to ad hoc ongoing request status displays discussed above, the Ingest subsystem
provides the standard reports described in Table 4.6-3.

4-156 305-CD-025-002

Table 4.6-2. Ingest HTML Forms
Method of Ingest FORM(S) Input Output

All InteractiveIngestMain -UserName
 Method of Ingest or
 Status Request
 selection
 Submit Request/Build
 DAN only option
 selection

Appropriate Method Form

Single Data Set
Directory

-
SingleDataSetDirectory

-FileTypeForm

-

- Data Type
 Directory
- File Type for each
 displayed file name

- Validation Status Form
 Next form
- Validation Status Form
 DAN ID
 RequestID (if submit
 option is selected)
 Next form (Interactive
 IngestMain)

Multiple Data Set
Directory

-MultiDataSetDirectory

-FileTypeForm

-Repeat FileTypeForm
 for every granule in
 directory

- Data Type
 Directory
- File Type for each
 displayed file name
....

- Validation Status Form
 Next form
- Validation Status Form

....

 DAN ID
 RequestID (if submit
 option is selected)
 Next form (Interactive
 IngestMain)

Interactively Build
DAN

- DANHeader

- DataTypeForm

- FileEntryTypeForm

- OriginatingSystem
 SequenceNumber
 ExpirationTime
- Data Type of data set

- File Location
 File Name
 File Type
 File Size (or select
 Determine File
 Size option

- Validation Status Form
 Next form

- Validation Status Form
 Next form
- Validation Status Form
 DAN File Name
 RequestID (if submit
 option is selected)
 Next form (Interactive
 IngestMain)

Supply DAN File
Name

DANFileName - DAN File Location
 DAN File Name

- Validation Status Form
 RequestID (if submit
 option is selected)
 Next form (Interactive
 IngestMain)

Request Status of on
going request

StatusForm - RequestID or UserID - Validation Status Form
 Request(s) Status

4-157 305-CD-025-002

4.6.4. Sustaining Engineering Interface to Data Processing Templates

Sustaining engineers can update the data/file type policy and source/target format information
maintained in Ingest Operations Data Base via the Sybase provided Interactive SQL (ISQL)
supported by Ingest provided stored procedures. The engineer will enter updates to the Data Type
Template table, the File Type Template and the Source MCF data base tables to add or modify a
data type in the Ingest Data Processing Template Tables. The DataType Template, FileType
Template and Source MCF Sybase data base tables drive the Ingest metadata extraction and data
conversion and validation software.

The sustaining engineer will be able, via Ingest provided stored procedures, to obtain formatted
reports on existing data type, file type and source MCF template data base table content. Ingest
will also provide store procedures to support the addition, deletion, or modification of a data type
and corresponding file type and source MCF template information to the data base. Table 4.6-4
describes Ingest provided stored procedures. It is expected that the sustaining engineer will modify
a test version of the operational data base using the provided stored procedure. The modification
will be validated by the Integration and Test personnel running Ingest in a test mode. Once tested,
the sustaining engineer will, via Sybase, create a backup of the modified template tables. The
template table backup will then be used to replace the operational data base template tables on the
operational Ingest data base system.

The sustaining engineer can execute the stored procedure in batch mode. Ingest will provide a
“sample” batch execute file for each stored procedure. The batch execution file will provide
detailed descriptions of required stored procedure input parameters. The engineer will be required
to edit the batch execution input file to supply values for each input parameter. Once modified, the
engineer will submit the batch file, via Sybase ISQL, to Sybase for processing. The stored
procedure resident on the Sybase server will be executed. Ingest stored procedures and table
triggers will provide appropriate consistency, completeness and range checking on all data base
insertions, deletions and modifications.

DID 611, Operator’s Manual, will contain detailed directions on adding, deleting, or modifying an
Ingest Data Processing Template data type.

Table 4.6-3. Standard Ingest Production Reports
Report Type Report Description Intended Audience

Ingest History Report (summary and
detailed versions)

The report gives a detailed account of
all ingest requests processed during a
reporting period, as well as summary
statistics. The report supplies
operations staff with a log and
summary view of ingest request
completion performance (e.g.,
maximum, minimum, average volume
of data ingested). The report is
generated on a daily, weekly, and
monthly summary basis, and as an ad
hoc report

Ingest Technician
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Assistant
DAAC Manager

4-158 305-CD-025-002

Table 4.6-4. Data Processing Template Stored Procedures
Stored Procedures Function

DataTypeReport (for all or a single specified data
type)

Produces formatted file or hardcopy report on Data
Type Template information (consisting of data type
ID and associated Data Server and Ingest granule
server URs) . The report can include information on
a single specified data type or information for all data
types defined in the Ingest data base

TemplateInformationReport (for all or a single
specified data type)

Produces formatted file or hardcopy report on Data
Processing Template tables. The report can contain
information on a single data type or information for
all data types defined in the Ingest data base

AddANewDataType Adds specified data type to the Data Type Template
data base. Validates that the data type does not
already exists in the data base

AddANewFileTypeRow Adds for a specified data type, all provided file type
information. Verifies specified data type exists and
validates provided information for type, range and
completeness

AddANewSourceMCFRow Adds for a specified data type, all provided
SourceMCF information. Verifies specified data
type exists and validates provided information for
type, range and completeness

DeleteADataType Deletes specified data type from Data Type
Template Table as well as corresponding entries in
FileType Template and Source MCF Template
Tables

DeleteAFileTypeRow Deletes specified SourceMCF row (based on
FileType/DataType composite key) from File Type
Template

DeleteASourceMCFRow Deletes specified SourceMCF row (based on
SourceMCF/TargetParameter composite key) from
SourceMCF Template

ModifyDataTypeUR Modifies data type UR for given data type ID key
and UR Type (Data Server or Ingest granule server)

ModifySourceParameter, ModityCSDT,
ModiryFiledLocationOffset, ModityFieldLength

Modifies appropriate field in SouceMCF Template
for given SourceMCF /Target Parameter composite
key. Verifies type and range

ModifyMaximum, ModifyMetadataSpecialization,
ModifyMetadataTarketName, ModifyMinimum,
ModifyRequeiredFlag,
ModifyScienceSpecialization,
ModifyScienceTargetName, ModifySourceMCF,
ModifyArchivalFlag, ModifyMetaDataStart,
ModifyMetaDataEnd, ModifyLineDelimiter,
ModifyStringDelimiter, ModifyPVSeparator,
ModifyFileClase

Modifies appropriate field in FileType Template for
given FileType/DataType Parameter composite key.
Verifies type and range

5-1 305-CD-025-002

5. ICLHW - Ingest Client HWCI

5.1 Introduction
Within ECS the Ingest Subsystem is responsible for multiple functions, including user data ingest,
hard media ingest, and the monitoring of ingest status. The principal area of ICLHW responsibility
in the SDPS architecture is the ingest and storage of Level 0 (L0) and other data sets for which a
highly-reliable interface is required. The criticality of the timely and reliable storage of L0 data
sets demands that a separate high reliability, high availability data server instantiation be dedicated
to L0 data ingest. Data which has been ingested will be made available to the Processing
Subsystem for the generation of higher level products. The daily volume of L0 data to be ingested
at each DAAC is taken from the 2/7/96 ECS Technical Baseline, and is shown in Table 5.1-1. The
Data Server volume of this document indicates the non-L0 data products which will be ingested
directly into hardware provided by the Data Server Subsystem utilizing ingest client software.
Data products to be ingested by Ingest Subsystem hardware include:

EDC: Landsat-7 L0R
GSFC: MODIS L0, COLOR L0
JPL: SeaWinds L0, DFA L0, MR L0
LaRC: CERES L0, TRMM H/K, MISR L0, MOPITT L0, SAGE III L0, ACRIM L0

Note: The non-L0 Landsat-7 L0R data is supplied to ICLHW due to the short duration that the
L0R data is stored within the Landsat-7 Processing System (LPS).

The DAAC unique volumes of this document describe the configurations required to support the
listed instruments. Sizing of Ingest Subsystem resources is sufficient to accommodate the listed
volumes, as described in the following paragraphs. The daily volumes to be ingested change at
each ECS release, generally increasing as additional missions are supported. The Ingest
Subsystem design is therefore scalable to support the growing daily and total data volumes.

* Landsat-7 L0R data is ingested through Ingest Client Host servers, stored temporarily in Ingest Working
Storage, and transferred to the permanent Data Server archive.

Table 5.1-1. Daily L0 Ingest Volumes
Daily L0

data ingest
by mission
by DAAC
(GB/day)

TRMM Landsat-7 AM-1 FOO/COLOR SAGE III ADEOS II ALT
RADAR

ACRIMSAT

ASF

EDC 139.4*

GSFC 70.3 3.75 0.05

JPL 0.12 0.15

LaRC 0.25 47.5 0.125

NSIDC

ORNL

5-2 305-CD-025-002

Functionality similar to that provided by the ingest client hosts is responsible for the ingest of data
types other than L0 in the Data Server Subsystem. Ingest client software capabilities are mapped
to data server components for support of the ingest of data types that are stored permanently within
the data server. The ingest and archiving of these other data types is discussed in the Data Server
Subsystem description volume of this document.

5.1.1 HWCI Design Drivers

The Ingest Subsystem hardware components consist of the client host servers, working storage,
and L0 archive repository. The rationale for the separation of L0 data ingest functions from other
data server functionality is discussed in Section 3.2.2. The data rates and volumes to be supported
at each of the DAAC sites vary, but the basic Ingest Subsystem configuration is consistent at all
sites and is described in the following section. The HWCI for the Ingest Subsystem consists solely
of the Ingest Client HWCI (ICLHW), which is comprised of the ingest client hosts required for
ingest management, control, monitoring, and processing of ingested data. The ICLHW also
contains working storage and archive repository components similar to those of the data server
Working Storage HWCI (WKSHW) and Data Repository HWCI (DRPHW). Those components
utilized for the ICLHW are specialized for use in the Ingest Subsystem due to the unique ingest
reliability, maintainability, and availability requirements as discussed in Section 3.2.2.1.

The client hosts manage the transfer of data into, out of, and within the Ingest Subsystem. The
loading on the client hosts is principally in two areas: I/O loading associated with the ingest of
Level 0 data from external sources and CPU loading required to perform basic ingest data checks,
metadata validation, and metadata extraction. Additional functions to be performed include
logging, status, and reporting activities, coordination of data transfers between working storage
and the ingest L0 archive, maintaining a database of all data contained within the Ingest
Subsystem, and servicing queries and retrievals on the archived L0 data. The principal factors
affecting sizing of the client hosts are summarized in Table 5.1-2.

5.1.1.1 Key Trades and Analysis

One trade analysis specific to the Ingest Subsystem hardware configuration was performed prior
to the ECS Release A CDR. The ECS Ingest Subsystem Topology Analysis, ECS Technical Paper
440-TP-014-001, analyzes and documents the configuration of the Ingest Subsystem based on the
results of the ECS Ingest Subsystem Design Analysis delivered at Release A PDR. The topology
analysis focuses on factors that affect the sizing requirements of Ingest Subsystem components, as

Table 5.1-2. Ingest Client Sizing Factors

Sizing factors Driving requirements

Ingest client I/O Receipt of L0 data from multiple external sources
Servicing L0 archive queries
Support of CPU loading factors

CPU loading Data reformatting
Support of ingest I/O loads
Ingest data server database maintenance
Ingest data checking
Metadata validation and extraction

5-3 305-CD-025-002

well as the capability of the configuration to meet reliability and availability requirements.
Methods for assuring acceptable system RMA, as well as the flexibility to evolve the ingest
configuration as mission requirements change are discussed as key Ingest Subsystem design
drivers.

The principal output of the study is the sizing of Ingest Subsystem components at each of the
Release A DAACs. The component sizing was accomplished using a combination of a paper
analysis of storage required to satisfy daily and annual ingest volumes, plus the development of a
queing model showing several system loading parameters at each stage of the ingest process. An
analysis of the Release B data volumes and required component capabilities was subsequently
performed. An additional result of this study is that the implementation of the Ingest Subsystem
architecture presented at IDR will satisfy the RMA and data ingest requirements based on an
analysis of key Ingest Subsystem drivers in Section 3.2. The implementation of this architecture
utilizing redundant ingest client hosts in a prime/backup configuration, as well as high reliability
RAID storage devices will provide the system availability and scalability necessary to support the
reliable ingest of data. Outputs from this trade study have been incorporated into the design
information presented in this document.

5.1.1.2 Ingest HWCI Sizing and Performance Analysis

The sizing of Ingest Subsystem hardware both from a system level and a component level is based
on the 2/7/96 version of the ECS Technical Baseline. Among the information included in the
baseline is data by instrument, average daily data volume by level, and data destination. The
average expected daily and annual data volumes at each site were calculated from this information
and used to determine the required ingest hardware capabilities. Ingest client hosts are sized to
accommodate the required ingest volumes as well as I/O and CPU capabilities to support internal
data transfers associated with metadata validation and extraction, L0 archive data retrieval, and
transfer of data to the Data Server or Processing Subsystems. Working storage disks are sized to
accommodate the above functions, as well as provide contingency space for the transfer of more
than one day’s worth of data within a 24-hour period. Working storage space is also effectively
increased by the use of a separate L0 repository, to which ingested data is written as soon as
required metadata extraction and validation is performed. The ingest L0 archive is sized to store
one year’s worth of L0 data, with sufficient storage and I/O capabilities to support anticipated
archive write and read loads. In general, L0 data stored for more than one year (plus or minus a
delta time, dependent on data type) is discarded from the repository. For L0 data without a LIA
counterpart (e.g., MOPITT) the L0 data is stored permanently in the repository. Since high RMA
is a driver for the Ingest Subsystem, all critical components also include some type of sparing or
redundancy to ensure that availability requirements are met.

An Ingest Queuing Model was developed to assist in the sizing of Ingest Subsystem components,
and is a very high level look at the data flows in the Ingest subsystem. This analysis is valid for
systems where each queue has only one server, and the inter-arrival times and service times have
exponential probability densities. In addition, the results are only valid for the steady-state
conditions, where the probability of finding the system in a given state does not change with time.

Model output is dependent on a series of model input parameters that may be varied depending on
characteristics of the data to be ingested, processed, and stored, as well as network and Ingest
Subsystem component capabilities and performance. Parameters such as server CPU and I/O

5-4 305-CD-025-002

performance, disk I/O, network performance, and the number of operations/byte associated with
each server process (e.g., capture, format, archive, distribute) may all be varied to analyze the
sensitivity of changes in data flows and system architecture. The load presented by each flow in
pkts/sec is a function of the number of bits/sec input from the previous process and the mean size
of packet/data set that this process expects. A “Source” item sends packets whose size and rate
depend on the network technology chosen. FDDI is baselined for the Ingest Subsystem connection
at all sites, with an assumed network efficiency of 60% from the maximum 100 Mbps clock rate.
Refer to the Release B CSMS Communications Subsystem Design Specification (305-CD-028-
002) for more details on the DAAC network architectures. A "capture" item includes server
functions that receive data from the network or hard media device. Capture rate is a function of
the input bandwidth and server I/O capabilities. The model includes statistics on the writing of the
ingested data to working storage and the writing of data back to the server to perform the "format"
operation. Both read and write operations have associated transfer rate and access time estimates
for each data transfer. Conservative estimates of 2 MB/sec read and write rates are used based on
results from Data Server prototyping efforts. Writing of data to the L0 archive repository involves
the capabilities of the working storage disks, server I/O, and repository devices. Finally, the
number of copies of data read from the archive and sent to a data sink (e.g., Processing Subsystem)
may be varied to determine the additional load of reprocessing on Ingest Subsystem resources.

Competitive procurement restrictions constrain this paper to identification of the class of
component and general performance characteristics used in the analysis, rather than actual
candidate components. The client host CPUs are low to mid-level Symmetric Multi-Processing
(SMP) 32-bit machines, capable of supporting multiple network (FDDI) and direct-connect (SCSI
II) devices. Working storage devices are RAID 5 units generally with a minimum of 2.0 days
worth of space allocated to ingest working storage required to support the functions of acquiring,
processing, validation, and archiving L0 data. This volume of working storage allows for one
day’s worth of L0 data to be staged for processing, an additional day’s worth available for
subsequent ingest, and an additional 25% available to service additional Ingest Subsystem needs
(e.g., L0 archive retrieval support, pre-processing, quality checking). Additional magnetic disk
resources are supplied within the Ingest Subsystem to support items such as client host operating
system and application software and L0 archive database directory information. RAID functions
as the L0 repository at the smaller DAAC sites (e.g., JPL), while a robotics and tape-based
repository is implemented at the sites with greater storage requirements (GSFC, LaRC). The Ingest
Subsystem implementation at EDC for Landsat-7 L0R data includes only RAID working storage.
The L0R archive repository is supplied by the Data Server subsystem.

Analysis of the ingest queuing model developed for CDR confirms the results of the paper analysis
conducted prior to IDR supporting the ability of the Release A Ingest Subsystem configurations to
support Level 0 data ingest requirements. Additional subsystem capacity is available for
contingency (e.g., ingest of more than one day’s worth of data in one day or resolving difficulties
encountered during reformatting or metadata validation activities), Version 0 data ingest, and
subsystem testing requirements. The DAAC-specific volume presents additional Ingest
Subsystem hardware sizing detail and rationale.

5-5 305-CD-025-002

5.1.1.3 Scalability, Evolvability, and Migration

Ingest Subsystem hardware must be easily scalable to support both different subsystem capabilities
at each of the DAAC sites as well as changing data ingest requirements over the life of the EOS
program. The architecture accommodates the required scalability through several different
mechanisms within the Ingest Subsystem components as described below.

Ingest Client Hosts - Client host resources may be increased in two ways as support for the
number and complexity of ingest clients increases. The first is through the addition of CPU,
internal memory, and I/O capabilities within a given client host platform or family. The second is
the addition of additional client host platforms to support additional interfaces and data providers
as the ingest client load increases. Client hosts can be added virtually without limit as network
attached storage devices are incorporated into the architecture. Machine upgrade or exchange for
a larger class machine may be necessary where processing and I/O demands for a single interface
increase significantly.

Working Storage - Local RAID disk banks can be added as working storage needs increase. The
limiting factor becomes the number of client hosts that can be directly connected to a particular
disk bank. Later ECS releases may also use network attached storage to facilitate the addition of
disk space. Disks can be added to the network connections, and when the networks begin to
become saturated, segmentation and subnetting techniques can improve performance.

L0 Archive Repository - The L0 archive repository is scalablescalability much like the client
hosts and working storage components in that additional media drives within a repository or
additional repositories may be added as required storage volumes increase. The ability to use
multiple file servers and the mixing of storage solutions like FSMS based systems in the
architecture lends itself to easy scaling. Adding additional file servers can enhance both file
handling bandwidth and processing capabilities. The flat common access nature of the robotics
based tape repositories allows the adding of file servers to gain access to the data without burdening
existing file servers.

5.1.2 HWCI Structure

The Ingest HWCI consists of all of the hardware contained within the Ingest Subsystem. Client
host computers control the flow of data into, out of, and within the Ingest Subsystem. Working
storage magnetic disks provide temporary storage for ingested data. The L0 archive repository
contains the devices required at each site for storage of Level 0 data for a period of one year (plus
or minus a delta time, dependent on data type). These are the principal components which
comprise the Ingest HWCI, and are described in greater detail in Section 5.1.2.2. Other peripheral
devices such as administrative terminals or workstations are required for Ingest Subsystem and
overall SDPS control, but are not strictly part of this HWCI. Note, however, that the Ingest
instantiation of WKSHW is “highly-reliable.” Namely, redundant processors and RAID are
included to ensure 0.999 availability and 15-minute switchover time. Figure 5.1-1 shows the
generic Release B Ingest HWCI configuration. DAAC-specific instantiations of this configuration
are contained in the DAAC-specific configuration volume.

5-6 305-CD-025-002

Figure 5.1-1. Ingest HWCI Block Diagram

5.1.2.1 Ingest HWCI Connectivity

The ingest clients support several different classes of interfaces. These interfaces support ingest
of data, insertion of the data into the ingest L0 archive repository, and control and monitoring of
Ingest Subsystem resources. The interface classes are summarized in Table 5.1-3.

The ASTER GDS will provide data on hard media. The hardware implementation for ASTER
media is discussed in the DIPHW CI section of the Data Server volume of the document. Ingest
and Data Server share the DIPHW CI, which provides media handling capabilities. Other
interfaces (e.g., SDPF and EDOS) provide hard media for contingency transfers and for some

Table 5.1-3. Ingest Client Interfaces

Ingest Client I/F I/F Type I/F Instantiation Examples

External data ingest Network FDDI

Ingest peripherals (hard media ingest) Network/bus SCSI II

Ingest working storage Network/bus SCSI II

Ingest L0 archive repository Network/bus SCSI II

Client host control/monitoring Network FDDI, Ethernet

Ingest Subsystem control/monitoring Network FDDI, Ethernet

To data server
and processing

subsystems
From external
data source Client

host(s)

L0
archive

repository

Working
storage

Admin.
workstation

5-7 305-CD-025-002

Version 0 migration. The majority of the Release B data transfers will occur through an electronic
interface. The mechanism for electronic transfer also varies depending on the data source. Some
data sources will notify ECS of the availability of data, which the Ingest Subsystem will get from
the source. Others will put data in a predefined location which is then periodically polled by the
ingest client software. At Release A, the principal driver in terms of daily electronic L0 data ingest
is the data received through the SDPF for the TRMM platform. At Release B, the principal driver
of daily electronic L0 data ingest is the data received through EDOS for the AM-1 platform and
Landsat-7 LPS L0R data received at EDC. The Moderate Resolution Imaging Spectrometer
(MODIS) and Multi-angle Imaging Spectro-Radiometer (MISR) AM-1 instrument data sent to
GSFC and LaRC, respectively, comprise the majority of the L0 data to be archived within the
Ingest Subsystem for the first several years of ECS operations. The reliable ingest and archiving
of this data, and the associated management of Ingest Subsystem resources are the principal drivers
in the Ingest Subsystem design. The effects of the interfaces driving the ingest HWCI design on
the sizing factors identified in Table 5.1-1 are summarized in Table 5.1-4. Identified impacts on
sizing factors and Ingest Subsystem components are estimates of the relative affects that a
particular interface to be supported has on the subsystem. Items designated as having a moderate
or high impact will drive the capabilities of the individual components as the site supporting that
interface.

The Ingest servers and workstation(s) will be directly connected to the DAAC Production FDDI
network, as is illustrated in Figure 5.1-2. The Ingest servers will contain dual-attached station
(DAS) cards, which will be dual-homed to separate FDDI concentrators. This provides
redundancy so that full connectivity will exist to the servers even in the event of a concentrator
failure. The workstation(s) will contain single-attached station (SAS) cards and each will be
connected to a single concentrator, but they will also be split across concentrators so that they are
not all connected to the same unit. The FDDI concentrators are in turn connected to the FDDI
switch. (Refer to section 5.2 of Volume 0 for a general description of DAAC networks.)

Table 5.1-4. Ingest HWCI Interface Drivers

External I/F Principal supported
functions

Affected sizing factor (high
or moderate impact)

Impacted Ingest Subsystem
components (high or moderate

impact)

EDOS L0 data ingest I/O, CPU Client hosts, working storage, L0
archive repository

SDPF L0 data ingest None (low average data
volume)

None

NESDIS/DAO
 (NOAA)

Ancillary data ingest CPU Client hosts

Landsat-7 L0R data ingest I/O, CPU Client hosts, working storage

SCF Special Product
 Ingest

None (low average daily
volume)

None

DAACs V0 data ingest I/O, CPU Client host (backupprocessor) and
Data Server subsystem hardware

ASTER GDS LIA/B data ingest I/O None (Data Server subsystem
hardware)

Users Derived data set None (low average daily
volume)

None

5-8 305-CD-025-002

Figure 5.1-2. Ingest Network Connectivity

The Ingest subsystem will have direct interfaces to the L0 data provider (e.g., EBnet at GSFC,
LaRC, and EDC). The L0 router(s) will contain a DAS card which will be connected to the two
separate FDDI concentrators, which will in turn be connected to the FDDI switch via a physically
cabled FDDI ring.

5.1.2.2 Ingest HWCI Component Description

The Ingest HWCI consists of the ingest client hosts, working storage, and L0 archive repository,
and is described in the following paragraphs. Estimates for the number of client hosts and other
Ingest Subsystem hardware required to support required ingest functions at each DAAC in the
Release B time frame are summarized in the DAAC-specific volumes of DID305. Table 5.1-5
summarizes the classes of components which comprise the Ingest HWC.

Table 5.1-5. Ingest HWCI Component Descriptions

Component Name Class/Type Comments

Client Host SMP Server W/S / Server W/S Sites require single or multi-processor mid-level
SMP servers

Working Storage RAID disk All sites will utilize one or more RAID units. MSFC
and

JPL

 will utilize working storage RAID units in
the

 Release-

B

 time frame in place of other data re-
pository hardware

L0 Archive Reposito-
ry

Archive Robotics An Automated Tape Library (ATL) or similar ro-
botics unit provides the 1 year storage of L0 data.
Required at certain sites in Release B and beyond

Linear Magnetic Drives A typical ATL will contain three media drives (e.g.,
D3 or 3590 tape) per unit. The three media drives
perform input, output, and backup functions

Work
Station

Ingest
Server

Ingest
Server

FDDI
Switch

FDDI Concentrator

EBnet
Router

FDDI Concentrator

5-9 305-CD-025-002

Client Hosts

The client hosts will perform pre-processing of the ingested data sufficient both to ensure the basic
quality of the received data and to prepare it for archiving and/or further processing. Checks
specific to the transfer mechanism (e.g., list of contents, checksums) will be performed, and
successful receipt and storage of the data will be acknowledged to the sender and recorded in the
ingest logs. It is assumed that for the Release B

configuration most data sets will be in a standard
format and that metadata will be read either from the file headers, well defined byte locations
within the file, or from separate files provided by the data producers rather than by derivation from
the data itself. Metadata to be read and logged or generated upon ingest includes data set name,
time of ingest, observation time, and granule id. Required format conversion varies from DAAC
to DAAC. Additional CPU capabilities necessary to support these conversions will be determined
as the required conversions are identified.

Ingest host I/O capabilities must include support for multiple high-bandwidth internal network and
peripheral connections. The required capabilities include technologies such as HiPPI, FDDI, and
SCSI II fast/wide for internal network and peripheral connections based on the needs at each site.
In particular, some sites implement digitizing/scanning hardware for electronic ingest of hardcopy
documents. In addition, sites that require migration of Version 0 data field peripheral devices to
support the pre-ECS migration process (using the facilities of the backup host processor).

The types of high performance network connections and data rates to be supported by the client
host hardware requires significant CPU capabilities. Candidates for client host hardware are
discussed in the DAAC-specific configuration appendix and are based on the ingest I/O rate and
volume requirements at each site. In general, the client host CPUs are low to mid-level Symmetric
Multi-Processing (SMP) 32-bit machines, capable of supporting multiple network (FDDI) and
direct-connect (SCSI II) devices. Commonality of components between subsystems is an SDPS
design goal. Therefore, the choice of the platform for the ingest client hosts is one that has been
made together with that for the data server specifically, as well as processing and other SDPS
subsystems, as appropriate. It is typical that workstations from a given manufacturer can be
expanded in their CPU and I/O capabilities within a given platform and without significant changes
to the system or application software. CPU and I/O capabilities vary at different sites, but should
be supported by the same basic platform which may be upgraded with additional capabilities as
increased I/O and processing loads demand.

Working Storage

Short term working storage provides a staging area for data moving both into the Ingest Subsystem
from network connections or ingest peripherals, and out of the Ingest Subsystem to the Processing
and Data Server Subsystems. Short term working storage performance and capacity is driven by
the requirement that the Ingest Subsystem reliably and efficiently capture large volumes of L0 data
as received from EDOS, SDPF, and other sources. The implementation is also driven by the need
for high RMA, as L0 data received from these sources must not be lost or delayed in its availability
to other ECS subsystems. This function will be implemented using high performance RAID
magnetic disks. Arrays will be shared across ingest hosts and will be sized to handle the anticipated
ingest volume, the staging of data out of the Ingest Subsystem, and working storage volume
necessary for reformatting, metadata validation, and metadata extraction operations.

5-10 305-CD-025-002

Other than the higher RMA requirement, the Ingest Subsystem requirements for working storage
are largely the same as those for the Data Server Subsystem and can be satisfied with the same type
of hardware. Availability will be 0.999 or better for the ingest of L0 data using a strategy
encompassing the use of warm spares; the reallocation of working storage space based on data
priority within the ingest, processing, and Data Server Subsystems; and the regular and timely
transfer of data to long term storage. Working storage devices are RAID 5 units generally with a
minimum of 2.0 days worth of space allocated to ingest working storage. These devices will be
sized to the data requirements of the individual sites and will support the functions of acquiring,
processing, validating, and archiving L0 data. This volume of working storage allows for one
day’s worth of L0 data to be staged for processing, an additional day’s worth available for
subsequent ingest, and an additional 25% available to service additional Ingest Subsystem needs
(e.g., L0 archive retrieval support, pre-processing, quality checking). Required working storage
volume ranges from several hundred megabytes at the smaller sites to several hundred gigabytes
at the larger sites.

The working storage at EDC for Landsat-7 L0R data ingest is the exception. Landsat-7 L0R data
is not accessed by the ECS Processing subsystem. Furthermore, the equivalent of twelve hours of
Landsat-7 L0R data must be ingested and archived by ECS within eight hours. Accordingly, one
day’s worth of RAID is allocated for initial ingest and associated preprocessing plus 25%
contingency.

An estimate of working storage volume required at each DAAC is shown in Table 5.1-6.
Additional magnetic disk resources are also supplied within the Ingest Subsystem to support items
such as client host operating system and application software and L0 archive database directory
information.

* Average daily rate = total daily ingest volume over a 24 hour period
** Working storage volume = (daily volume x 2) plus 25%
*** Repository volume = daily volume x 365
**** The archive repository for Landsat-7 L0R data is supplied by the Data Server Subsystem

Table 5.1-6. Annual L0 Storage Volumes

Ingest Sub-
system Capa-

bilities by
DAAC

Total Daily L0 In-
gest Volume (GB/

day)

Average Data In-
gest Rate (Mbits/

sec)*

Short-term (Work-
ing) Storage Vol-

ume (GB)**

Level 0 Repository
(1 year) Volume

(GB)***

ASF

EDC 139.4 12.91 174.25 0****

GSFC 70.4 6.5 176 25,696

JPL 0.27 0.025 0.675 98.6

LaRC 47.6 4.4 119 17,374

NSIDC

ORNL

5-11 305-CD-025-002

L0 Archive Repository

The Ingest Subsystem, through a combination of short term working storage and long term storage
resources, must pass ingested data to other ECS subsystems as required for processing, or other
needs of the data system. An additional function of the long term storage portion of the Ingest
Subsystem is to store all ingested spacecraft Level 0 data as received from EDOS for a period of
one year (plus or minus a delta time, dependent on data type). For Level 0 data without Level 1A
counterpart (e.g., MOPITT) the Level 0 data is stored permanently. These functions are
accomplished through the use of a data repository which is dedicated to the Ingest Subsystem.

The volumes to be stored at Release B in several of the DAACs are significant enough to require
the addition of a robotics-based archive unit as described below. The L0 archive receives data from
the short term working storage and stores it in an automated fashion on high density media. The
likely access pattern to this data is one of initial sequential ingest, possible reading of some or all
of the ingested data within 24 hours or less, and then infrequent subsequent access. This access
pattern, along with the data volumes and ingest rates to be supported at some of the Release B sites,
lends itself to a helical scan streaming tape technology (e.g., D3) or linear tape (e.g., 3590) in an
automated tape library (ATL) configuration. Multiple tape drives would be available for
simultaneous read, write, and hot spare capabilities. The configuration of the ingest L0 archive
hardware (e.g., drives, media, robotics, interfaces) are the same as that for the Data Server
Subsystem repositories to support the goal of commonality in development, operations, and
maintenance of ECS hardware and software. The possible exception to this would be the
incorporation of additional media drives and interfaces to support the increased RMA requirements
of the Ingest L0 archive, but this would not significantly change the implementation of the
repository. The repositories at each site will be sized to accommodate sufficient media to store one
years worth of L0 data, plus a scaling factor of approximately 5% to account for file storage
management overhead and data storage inefficiencies. Table 5.1-6 shows the required annual
volume of L0 data to be stored at each site.

5.1.3 Failover and Recovery Strategy

The Ingest Subsystem failure and recovery strategy is implemented to satisfy the RMA
requirements associated with science data ingest, which require an operational availability of 0.999
and switchover from a primary to backup capability within 15 minutes. The failover/recovery
strategy for the Ingest Subsystem is implemented in several ways:

• Recovery from the failure of individual data transfers is initiated automatically, with a
tunable number of automated retries before a failure alert is sent to an operator.

• Recovery from a failure in the primary client host CPU involves detection of the failure,
resetting the network address of the backup client host to that of the primary, mounting the
dual-ported disks shared by the backup and primary, and other minimal software
reconfiguration required to make the backup to look identical to the primary.

There are three types of network failures that may affect the Ingest subsystem:

• If the FDDI cable between a host and the FDDI concentrator is severed or damaged, then a
new cable would need to be installed. No other configuration would be required.

• If an individual port on the FDDI concentrator fails, then the attached host must be moved
to another port, again with no other configuration required.

5-12 305-CD-025-002

• Finally, if the entire concentrator fails, then it will have to be replaced, which can be done
rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstation(s). For the Ingest
servers, there is no single point of failure for the network for receiving L0 data. Since all Ingest
servers are attached to two hubs, they will communicate as normal in the event of a cable or
concentrator fault, and the applications will be unaware of and unaffected by the event (e.g., L0
ingest will not be interrupted).

Failures in working storage are accommodated in two ways:

• Redundancy is an inherent design feature of RAID devices, typically allowing the failure
of one drive in the unit without any loss of data and minimal performance degradation.
Many RAID units also incorporate software that keeps track of soft errors as well as hard
failures, allowing drives that may be gradually failing to be replaced prior to a hard failure.
Even in the event of a hard failure, the unit can continue to operate while a new drive is
installed and rebuilt using the data from the other drives in the unit.

• A catastrophic failure of the RAID unit would require that ingest operations be temporarily
limited to high-priority data ingest only. Each Release B site has at least two RAID
devices, with one designated current as working storage and one as space available for
catchup ingest. Open capacity in the catchup drive could temporarily be used to take over
working storage functions.

A-1 305-CD-025-002

Appendix A. Requirements Trace

The TRMM Development (Release A) and AM-1/Landsat-7 Development (Release B) Level 4
requirements listed in the following table reflect the Release B pre-CDR baseline of the RTM
database. The text provided below is a subset of that in the RTM data base and is included to aid
the reader in mapping requirements to object classes, CSCs, and CIs.

Table A-1. Requirements Trace (1 of 17)

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00010 The INGST CI shall accept Network Ingest Requests to request
automated electronic network ingest of a collection of Data. The
collection of Data shall describe one or more Data Granules.

InSession

S-INS-00020 The INGST CI shall check the Network Ingest Request to verify
that the date/time prior to which the data will remain available is a
valid date/time.

InRequest

S-INS-00030 The INGST CI shall authenticate the provider of a Network Ingest
Request as an authorized provider of data to be ingested.

CsGateway

S-INS-00040 The INGST CI shall report status to the provider of a Network
Ingest Request and to the Error Log indicating successful or
unsuccessful authentication of the provider as authorized to submit
the request.

CsGateway

S-INS-00050 The INGST CI shall report the following to the MSS event log
services: a. Receipt of a network ingest request; b. Response to
a network ingest request.

InSession

S-INS-00060 The INGST CI shall report status to the provider of a Network
Ingest Request for the following:a._File transfer failureb._File size
discrepanciesc._Invalid Data Type Identifierd._Missing required
metadatae._Metadata parameters out of rangef._Data conversion
failureg._Failure to archive datah._Inability to transfer data within
the specified time windowi._Missing required request
informationj._Successful archive of the data

InSession

S-INS-00062 The INGST CI shall report the following events by means of the
CSS Event Logger Service, during the processing of a Network
Ingest Request:a. Receipt of an unexpected message from the
ingest providerb. Detection of invalid information on a message
received from the ingest providerc. Communication failure with the
provider of the Ingest Request, as reported to the INGST CI by
CSS communication servicesd. File transfer failures reported to
the INGST CI by CSS File Access Service e. Detection of
discrepancies between the number of the file(s) received and the
specifications in the Ingest Request.

InSession

S-INS-00064 The INGST CI shall report the following events by means of the
CSS Event Logger Service, during tests of the network ingest
interface between ECS and external data providers:a. Receipt of
a message by the Ingest interfaceb. Start of processing for a valid
Ingest Requestc. Completion of all processing associated with the
Ingest Request

InSession

A-2 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00070 The INGST CI shall provide the capability to periodically check a
location accessible to the ESN for the presence of a Delivery
Record file describing data to be ingested. The Delivery Record
file shall contain the same information as a Network Ingest
Request.

InPollingIngestSessio
n

S-INS-00080 The INGST CI shall read a Delivery Record file describing data to
be ingested at a location accessible to the ESN and submit a
corresponding Network Ingest Request to be processed.

InDAN

S-INS-00083 The INGST CI shall determine the data type for expedited data
provided by EDOS.

InPollingIngestSessio
n

S-INS-00085 The INGST CI shall report status to the provider of a polling ingest
request (delivery record file) for the following: a. File transfer
failure; b. File size descrepancies; c. Invalid data type identifier;
d. Missing required meatdata; e. Metadata parameters out of
range; f. Failure to archive data; g. Missing required request
information; h. Successful archive of the data.

InPollingIngestSessio
n

S-INS-00090 The INGST CI shall provide the capability for authorized operations
staff to set the period between checking for the presence of
Delivery Record files.

InExternalDataProvid
erInfo

S-INS-00100 The INGST CI shall provide the capability to periodically check a
location accessible to the ESN for the presence of data granule
files.

InPollingIngestSessio
n

S-INS-00110 The INGST CI shall submit an Polling Ingest Request after
detecting the presence of data granule files in a location accessible
to the ESN. The request shall contain the file location.

InPollingIngestSessio
n

S-INS-00120 The INGST CI shall provide the capability for authorized operations
staff to set the period between checking for the presence of
external data granule files.

InExternalDataProvid
erInfo

S-INS-00130 The INGST CI shall interactively accept Hard Media Ingest
Requests from operations staff for data to be ingested from hard
media.

InMediaIngest

S-INS-00140 The INGST CI shall check the Hard Media Ingest Request to verify
that the Media Type is a type supported by the facility to which the
request was submitted.

InMediaIngest

S-INS-00150 The INGST CI shall verify that the External Data Provider specified
in a Hard Media Ingest Request is an authorized provider of hard
media to be ingested.

InMediaIngest

S-INS-00160 The INGST CI shall authenticate that the Hard Media Ingest
Request is input by operations staff authorized to ingest hard
media data.

InMediaIngest

S-INS-00165 The INGST CI shall read a Delivery Record file describing data to
be ingested to determine the files to be ingested after hard media
data transfer.

InDAN

Table A-1. Requirements Trace (2 of 17)

A-3 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00170 The INGST CI shall report Hard Media Ingest Request status to the
submitting operations staff for the following:|a. Media file transfer
failure|b. Invalid Data Type Identifier|c. Missing required
metadata|d. Metadata parameters out of range|e. Data
conversion failure|f. Failure to archive data|g. Missing file
describing media data to be ingested|h. Unauthorized hard
media provider|i. Unauthorized operations staff|j. Successful
archive of data

InMediaIngest

S-INS-00175 The INGST CI shall report Hard Media Ingest Request status to the
MSS event log for the following:| a. Unauthorized hard media
provider| b. Unauthorized operations staff

InMediaIngest

S-INS-00180 The INGST CI shall interactively accept Network Ingest Requests
from authorized science users for electronic network ingest of a
collection of Data from a location accessible via the ESN. The
collection of Data shall describe one or more Data Granules.

InInteractiveIngest

S-INS-00187 The INGST CI shall access the Advertising service to determine
the availability of a Network Ingest Request service for a given
Data Type Identifier.

InDataTypeTemplate

S-INS-00190 The INGST CI shall check the Network Ingest Request to verify
that the date/time prior to which the data will remain available is a
valid date/time in a Network Ingest Request entered interactively
by a science user.

InRequest

S-INS-00200 The INGST CI shall allow a science user to specify the list of
granule files in an interactive Network Ingest Request based on a
displayed list of existing files stored on magnetic disk.

InInteractiveIngest

S-INS-00205 The INGST CI shall determine the External Data Provider for a
Network Ingest Request entered interactively by a science user.

InInteractiveIngest

S-INS-00207 The INGST CI shall automatically determine the data volume for
each file in the list of granule files for an interactively entered
Network Ingest Request.

InInteractiveIngest

S-INS-00208 The INGST CI shall authenticate that the interactive science user
entering a Network Ingest Request is authorized to request ingest
of data.

InInteractiveIngest

S-INS-00209 The INGST CI shall report to the Error Log an unauthorized attempt
to interactively request ingest of data.

InInteractiveIngest

S-INS-00210 The INGST CI shall allow authorized science users to save the
contents of an interactively entered Network Ingest Request in a
Delivery Record file with a specified file name.

InInteractiveIngest

S-INS-00220 The INGST CI shall report status to the interactive submitter of a
Network Ingest Request for the following:|a. File transfer
failure|b. File size discrepancy|c. Invalid Data Type
Identifier|d. Missing required metadata|e. Metadata
parameters out of range|f. Data conversion failure|g. Failure
to archive data|h. Inability to transfer data within the specified
time window|i. Unauthorized science user|j. Missing required
request information|k. Successful archive of the data

InInteractiveIngest

S-INS-00221 The INGST CI shall interactively accept Document Ingest
Requests from authorized science users for ingest of a single
collection of document Data from a location accessible via the
ESN. The collection of document Data shall describe one or more
document Data Granules.

InInteractiveIngest

Table A-1. Requirements Trace (3 of 17)

A-4 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00222 The INGST CI shall check the Document Ingest Request to verify
that the date/time prior to which the data will remain available is a
valid date/time in a Document Ingest Request entered interactively
by a science user.

InRequest

S-INS-00224 The INGST CI shall allow a science user to specify the list of
document granule files in an interactive Document Ingest Request
based on a displayed list of existing files stored on magnetic disk.

InInteractiveIngest

S-INS-00225 The INGST CI shall determine the data provider and assign the
Priority Information for a Document Ingest Request entered
interactively by a science user.

InInteractiveIngest

S-INS-00226 The INGST CI shall automatically determine the data volume for
each file in the list of document granule files for an interactively
entered Document Ingest Request.

InInteractiveIngest

S-INS-00227 The INGST CI shall authenticate that the interactive science user
entering a Document Ingest Request is authorized to request
ingest of data.

InInteractiveIngest

S-INS-00228 The INGST CI shall report to the Error Log an unauthorized attempt
to interactively request ingest of document data.

InInteractiveIngest

S-INS-00229 The INGST CI shall allow authorized science users to save the
contents of an interactively entered Document Ingest Request in a
file with a specified file name.

InInteractiveIngest

S-INS-00230 The INGST CI shall report status to the interactive submitter of a
Document Ingest Request for the following:|a. File transfer
failure|b. File size discrepancy|c. Invalid Data Type
Identifier|d. Missing required metadata|e. Metadata
parameters out of range|f. Data conversion failure|g. Failure
to archive data|h. Inability to transfer data within the specified
time window|i. Unauthorized science user|j. Missing required
request information|k. Successful archive of the data

InInteractiveIngest

S-INS-00234 The INGST CI shall access the Advertising service to determine
the availability of a Document Ingest Request service for a given
Data Type Identifier.

InDataTypeTemplate

S-INS-00235 The INGST CI shall accept ingest Status Requests from science
users to determine the status of:|a. A specified ongoing Ingest
Request, previously submitted by the science user who is
requesting status and identified by the ingest Request Identifier|b.
All of the user's ongoing Ingest Requests

InRequestController

S-INS-00240 The INGST CI shall determine the User Identifier for a science user
submitting an ingest Status Request.

InRequestController

S-INS-00250 The INGST CI shall return status on a science user's ongoing
Network Ingest Requests, based on User Identifier, to the user.

InRequestController

S-INS-00260 The INGST CI shall provide science users the capability to display
the status of the user's ongoing request processing. Displayed
status shall include the External Data Provider, ingest Request
Identifier, total ingest data volume, and Request State.

InRequestController

S-INS-00270 The INGST CI shall accept ingest Status Requests from authorized
operations staff to determine the status of:|a. A specified
ongoing Ingest Request identified by ingest Request Identifier|b.
All ongoing Ingest Requests associated with a specified User
Identifier|c. All ongoing Ingest Requests

InRequestController

Table A-1. Requirements Trace (4 of 17)

A-5 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00280 The INGST CI shall determine the User Identifier for an operations
staff member submitting an ingest Status Request.

InRequestController

S-INS-00290 The INGST CI shall authenticate the User Identifier of operations
staff requesting status on all ongoing Ingest Requests.

InRequestController

S-INS-00295 The INGST CI shall return an error status to the requester and log
information in the Error Log if status is requested on ongoing
Ingest Requests from an unauthorized requester.

InRequestController

S-INS-00300 The INGST CI shall return status on ongoing Ingest Requests to an
authorized operations staff member.

InRequestController

S-INS-00310 The INGST CI shall provide authorized operations staff the
capability to view the status of ongoing ingest processing.
Displayed status shall include the External Data Provider, ingest
Request Identifier, total ingest data volume, and Request State.

InRequestController

S-INS-00315 The INGST CI shall provide the capability for authorized operations
staff to select status of ongoing Ingest Request processing for
viewing by means of the External Data Provider.

InRequestController

S-INS-00316 The INGST CI shall accept an Ingest Request from authorized
applications.

InRequestManager

S-INS-00317 The INGST CI shall authenticate the User Identifier of an
application submitting an Ingest Request.

InRequestManager

S-INS-00318 The INGST CI shall determine the Priority Information for each
Ingest Request based on the External Data Provider and the
requested ingest priority for the request.

InRequestManager

S-INS-00319 The INGST CI shall add a submitted Ingest Request to a list of
Ingest Requests sorted by Priority Information.

InRequestManager

S-INS-00320 The INGST CI shall select an Ingest Request for processing based
on the priorities of current requests so long as the number of
requests concurrently processed is less than a threshold specified
by operations staff. Requests of equal priority will be processed
first-in, first-out.

InRequestManager

S-INS-00321 The INGST CI shall advertise available Interactive Network Ingest
services.

InInteractiveIngest

S-INS-00325 The INGST CI shall determine the ingest start/stop dates and times
for all ingested data.

InRequest

S-INS-00330 The INGST CI shall determine the Data Type Identifier for a set of
ingested files, whenever the identifier was not provided in the
Ingest Request.

Deleted by pending
CCR

S-INS-00340 The INGST CI shall report status on processing of an Ingest
Request to the Error Log for the following:|a. File transfer
failure|b. File size discrepancy|c. Invalid Data Type
Identifier|d. Missing required metadata|e. Metadata
parameters out of range|f. Metadata extraction failure|g. Data
conversion failure|h. Data reformatting failure|i. Failure to
archive data|j. Inability to transfer data within the specified time
window|k. Missing required request information|l.
Unauthorized Ingest Request submitter|m. Successful archive
of the data

InRequest

Table A-1. Requirements Trace (5 of 17)

A-6 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00345 The INGST CI shall report status on the performance of ingest
requests to the MSS with the following information:|a. file transfer
duration|b. file processing duration|c. data insert duration

InGranuleAsynch_S

S-INS-00350 The INGST CI shall accept an ingest Cancellation Request from
authorized operations staff to cancel an ongoing ingest request,
specifying the ingest Request Identifier.

InRequestController

S-INS-00355 The INGST CI shall accept an ingest Suspension Request from
authorized operations staff to suspend ongoing ingest request
processing for a specified ingest Request Identifier, to suspend all
ongoing ingest request processing from a specified External Data
Provider, or to suspend all ongoing ingest request processing.

InRequestController

S-INS-00357 The INGST CI shall accept an ingest Resumption Request from
authorized operations staff to resume ongoing ingest request
processing for a specified ingest Request Identifier, to resume all
ongoing ingest request processing from a specified External Data
Provider, or to resume all ongoing ingest request processing.

InRequestController

S-INS-00360 The INGST CI shall authenticate the User Identifier of operations
staff submitting an ingest Cancellation Request.

InRequestController

S-INS-00363 The INGST CI shall authenticate the User Identifier of operations
staff submitting an ingest Suspension Request or ingest
Resumption Request.

InRequestController

S-INS-00364 The INGST CI shall accept an ingest Cancellation Request from
authorized applications to cancel an ongoing Ingest Request,
specifying the Request Identifier.

InRequestManager

S-INS-00365 The INGST CI shall accept an ingest Suspension Request from
authorized applications to suspend ongoing ingest request
processing for a specified Request Identifier, to suspend all
ongoing ingest request processing from a specified External Data
Provider, or to suspend all ongoing ingest request processing.

InRequestManager

S-INS-00367 The INGST CI shall accept an ingest Resumption Request from
authorized applications to resume ongoing ingest request
processing for a specified Request Identifier, to resume all ongoing
ingest request processing from a specified External Data Provider,
or to resume all ongoing ingest request processing.

InRequestManager

S-INS-00369 The INGST CI shall authenticate the User Identifier of an
application submitting an ingest Cancellation Request.

InRequestManager

S-INS-00370 The INGST CI shall authenticate the User Identifier of an
application submitting an ingest Suspension Request or ingest
Resumption Request.

InRequestManager

S-INS-00380 The INGST CI shall provide authorized operations staff the
capability to set thresholds for:|a. Total number of Ingest
Requests to process concurrently|b. Number of Ingest Requests
for each External Data Provider to process concurrently|c. Total
volume of data to ingest concurrently|d Volume of data for each
External Data Provider to ingest concurrently|e. Number of data
transfer retry attempts for each external interface to ECS

InExternalDataProvid
erInfo

S-INS-00390 The INGST CI shall authenticate the User Identifier of operations
staff requesting to set thresholds for concurrent ingest processing.

InExternalDataProvid
erInfo

Table A-1. Requirements Trace (6 of 17)

A-7 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00392 The INGST CI shall report status on ingest Cancellation Requests
to the requesting operations staff and to the Error Log for the
following:|a. Unauthorized requester|b. Invalid ingest Request
Identifier|c. Unable to cancel specified Ingest Request

InRequestController

S-INS-00393 The INGST CI shall report status on ingest Suspension Requests
to the requesting operations staff and to the Error Log for the
following: |a._Unauthorized requester |b._Invalid ingest Request
Identifier |c._Unable to suspend specified Ingest Request(s)

InRequestController

S-INS-00394 The INGST CI shall report status on ingest Resumption Requests
to the requesting operations staff and to the Error Log for the
following:|a. Unauthorized requester|b. Invalid ingest Request
Identifier

InRequestController

S-INS-00395 The INGST CI shall report status on ingest threshold setup
Requests to the requesting operations staff and to the Error Log for
the following:|a. Unauthorized requester|b. Invalid ingest
Request Identifier|c. Unable to suspend specified Ingest
Request(s)

InRequestController

S-INS-00396 The INGST CI shall report status on ingest Cancellation Requests
to the requesting application and to the Error Log for the
following:|a. Unauthorized requester|b. Invalid ingest Request
Identifier|c. Unable to suspend specified Ingest Request(s)|

InRequestManager

S-INS-00397 The INGST CI shall report status on ingest Suspension Requests
to the requesting application and to the Error Log for the following:
|a._Unauthorized requester |b._Invalid ingest Request Identifier
|c._Unable to suspend specified Ingest Request(s)

InRequestManager

S-INS-00398 The INGST CI shall report status on ingest Resumption Requests
to the requesting application and to the Error Log for the following:
|a._Unauthorized requester |b._Invalid ingest Request Identifier

InRequestManager

S-INS-00400 The INGST CI shall convert ingested data into a form accepted by
the SDSRV CI / DDSRV CI, for following data types: a. NMC GRIB
data.

InGRIBData

S-INS-00401 The INGST CI shall convert ingested data into a form accepted by
the SDSRV CI/DDSRV CI.

InDataPreprocessTas
k

S-INS-00402 The INGST CI shall reformat ingested data into a form accepted by
the SDSRV CI/DDSRV CI, as needed.

InDataPreprocessTas
k

S-INS-00403 The INGST CI shall perform the following metadata conversions:
a. PB5 time into ECS standard date / time format; b. Binary integer
values into ASCII integer format; c. Binary floating point values into
ASCII floating point format.

InMetadata

S-INS-00404 The INGST CI shall extract metadata from ingested data into a
form accepted by the Science Data Server / Document Data
Server, as needed, for the following categories of data: a.
Metadata parameters stored by parameter byte order and
parameter byte length; b. Metadata parameters stored in PVL
format; c. Metadata parameters stored in HDF format; d. Dataset-
specific metadata formats

InMetadata

S-INS-00405 The INGST CI shall append the following ingest-specific metadata
to metadata corresponding to ingested data:|a. Ingest start date
and time|b. Ingest stop date and time|c. Metadata parameter
check status|d. Total data volume

InMetadata

Table A-1. Requirements Trace (7 of 17)

A-8 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00406 The INGST CI shall check selected parameters from extracted
metadata to verify: |a. Metadata parameters stored in a dataset
specific format|b. For numeric metadata parameters limited by
a range of values, that parameter values lie within the specified
range|c. For metadata parameters with values limited to a set of
discrete values, that parameter values are listed in the specified
set|d. That the metadata parameter syntax is correct|e. For
metadata containing parameters describing the data size, that the
data size is correct (within a specified tolerance)|f. That date /
time values include a valid month, day of month, hour, minute, and
second|g. That date / time values include a year value within a
range specific for that date / time value

InMetadata

S-INS-00408 For each data granule specified in an Ingest Request the INGST CI
shall determine by means of an Advertisement the appropriate
SDSRV CI/DDSRV CI in which to store the data granule.

InDataServerInsertion
Task

S-INS-00409 The INGST CI shall provide the capability to request storage of a
data granule by means of a Data Insert Request to the SDSRV CI/
DDSRV CI associated with the type of the data granule.

InDataServerInsertion
Task

S-INS-00410 The INGST CI shall provide the capability to electronically transfer
data to be ingested via the ESN into a specified ECS storage
location.

InDataTransferTask

S-INS-00420 The INGST CI shall provide the capability for an external
application to transfer data to be ingested into a specified ECS
storage location.

InInteractiveIngest

S-INS-00425 The INGST CI shall provide the capability to request transfer of
data from an 8mm tape.

InMediaIngest

S-INS-00430 The INGST CI shall provide the capability by means of a Working
Storage Allocation Request to the Data Server to allocate storage
space for data to be transferred to satisfy an ingest request.

InDataTransferTask

S-INS-00440 The INGST CI shall estimate whether data may complete transfer
before the date/time prior to which the data will remain available.

InRequest

S-INS-00450 The INGST CI shall retry transfer of data from the External Data
Provider N times before the ingest request is failed, where N is a
number specified by operations staff.

InDataTransferTask

S-INS-00455 Operations staff shall contact the network operations staff and
External Data Provider operations staff to resolve data transfer
problems that are not handled automatically.

N/A (Operational)

S-INS-00460 The INGST CI shall determine the size of each file transferred to
ECS whenever file sizes are specified in the corresponding Ingest
Request.

InFile

S-INS-00470 The INGST CI shall compare the size of each file after data transfer
to ECS with file sizes specified in the corresponding Ingest
Request.

InFile

S-INS-00480 The INGST CI shall verify that all files specified in an Ingest
Request are successfully transferred to ECS.

InDataTransferTask

Table A-1. Requirements Trace (8 of 17)

A-9 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00490 The INGST CI shall log the following information in an Ingest
History Log for each received Ingest Request:|a. Ingest start/
stop dates and times|b. Ingest Request Identifier|c. External
Data Provider|d. Final Service Request Status|e. Data Type
Identifiers|f. Ingest data volume|g. # of data sets|h. # of
data files

InRequest

S-INS-00500 The INGST CI shall provide operations staff the capability to view
selected entries from the Ingest History Log.

InHistoryLog

S-INS-00510 The INGST CI shall provide the capability to select Ingest History
Log entries for viewing by the following parameters: |a. Ingest
start/stop dates and times|b. External Data Provider|c. Data
Type Identifier|d. Final Service Request Status|e. Test or
operational mode

InHistoryLog

S-INS-00520 The INGST CI shall ingest data, provided by the SDPF, from the
ESN into the LaRC DAAC, using a file transfer protocol.

InSession

S-INS-00530 The INGST CI shall ingest data, provided by the SDPF, from
physical media into the LaRC DAAC as a backup transfer
mechanism.

InMediaIngest

S-INS-00540 The INGST CI shall ingest data, provided by the SDPF, from the
ESN into the MSFC DAAC using a file transfer protocol.

InSession

S-INS-00550 The INGST CI shall ingest data, provided by the SDPF, from
physical media into the MSFC DAAC as a backup transfer
mechanism.

InMediaIngest

S-INS-00560 The INGST CI shall ingest Data, provided by the TSDIS, from the
ESN into the GSFC DAAC using a file transfer protocol.

InSession

S-INS-00570 The INGST CI shall ingest Data, provided by the TSDIS, from the
ESN into the MSFC DAAC using a file transfer protocol.

InSession

S-INS-00580 The INGST CI shall ingest Data, provided by the EDOS, from the
ESN into the GSFC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00590 The INGST CI shall ingest Data, provided by the EDOS, from the
ESN into the LaRC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00600 The INGST CI shall ingest Data, provided by the EDOS, from
physical media at the GSFC DAAC as a backup transfer
mechanism.

InMediaIngest

S-INS-00610 The INGST CI shall ingest Data, provided by the EDOS, from
physical media at the LaRC DAAC as a backup transfer
mechanism.

InMediaIngest

S-INS-00620 The INGST CI shall ingest data, provided by the DAO, from the
ESN into the LaRC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00630 The INGST CI shall ingest data, provided by NESDIS, from the
ESN into the LaRC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00640 The INGST CI shall ingest data, provided by the DAO, from the
ESN into the GSFC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00645 The INGST CI shall ingest Data, provided by the NMC, from the
LAN into the GSFC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00650 The INGST CI shall ingest data, provided by the DAO, from the
ESN into the EDC DAAC using a file transfer protocol.

InPollingIngestSessio
n

Table A-1. Requirements Trace (9 of 17)

A-10 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00670 The INGST CI shall ingest Data, provided by an SCF, from the
ESN into the MSFC DAAC using a file transfer protocol.

InInteractiveIngest

S-INS-00680 The INGST CI shall ingest Data, provided by an SCF, from the
ESN into the LaRC DAAC using a file transfer protocol.

InInteractiveIngest

S-INS-00682 The INGST CI shall ingest Data, provided by an SCF, from the LAN
into the GSFC DAAC using a file transfer protocol.

InInteractiveIngest

S-INS-00684 The INGST CI shall ingest Data, provided by an SCF, from the LAN
into the JPL DAAC using a file transfer protocol.

InInteractiveIngest

S-INS-00720 The INGST CI shall ingest data, provided by the EOC, from the
ESN using a file transfer protocol.

InSession

S-INS-00730 The INGST CI shall ingest data, provided by the FDF, from the
ESN into the GSFC DAAC using a file transfer protocol.

InSession

S-INS-00740 The INGST CI shall accept a TBD request for Repaired Orbit Data. Deleted by CCR 96-
0104

S-INS-00780 The INGST CI shall ingest data, provided by the Landsat 7
Processing Facility (LPS), from the ESN into the EDC DAAC using
a file transfer protocol.

InSession

S-INS-00785 The INGST CI shall ingest Data, provided by the Landsat 7 Image
Assessment System (IAS), from the LAN into the EDC DAAC using
a file transfer protocol.

InInteractiveIngest

S-INS-00787 The INGST CI shall ingest Data, provided by the Landsat 7
International Ground Stations (IGSs), into the EDC DAAC on 8 mm
cartridge tape.

InMediaIngest

S-INS-00790 The INGST CI shall ingest data, received on physical media from
the ASTER GDS, into the EDC DAAC.

InMediaIngest

S-INS-00800 The INGST CI shall ingest Data, provided by Version 0, from the
LaRC DAAC using a file transfer protocol.

InPollingIngestSessio
n

S-INS-00810 The INGST CI shall ingest Data, provided by Version 0, from the
GSFC DAAC on 8mm tape.

InMediaIngest

S-INS-00830 The INGST CI shall ingest Data, provided by Version 0, from the
MSFC DAAC on 8mm tape.

InMediaIngest

S-INS-00840 The INGST CI shall ingest data provided by ADEOS II/SeaWinds
into the JPL DAAC.

InPollingIngestSessio
n

S-INS-00841 The INGST CI shall ingest data, provided by RADARSAT
Geophysical Processing System (RGPS), into the ASF DAAC via
file transfer protocol.

InSession

S-INS-00843 The INGST CI shall ingest data, provided by the Acquisition
Planning System (APS), into the ASF DAAC via file transfer
protocol.

InSession

S-INS-00845 The INGST CI shall ingest data, provided by the Product
Verification System (PVS), into the ASF DAAC via file transfer
protocol.

InSession

S-INS-00847 The INGST CI shall ingest data, provided by the Production
Planning System (PPS), into the ASF DAAC via file transfer
protocol.

InSession

Table A-1. Requirements Trace (10 of 17)

A-11 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00849 The INGST CI shall ingest data, provided by the Flight Agency
Interface (FAIF), into the ASF DAAC via file transfer protocol.

InSession

S-INS-00850 The INGST CI shall ingest Data, provided by SAGE III, into the
LaRC DAAC.

InPollingIngestSessio
n

S-INS-00852 The INGST CI shall ingest Data, provided by ACRIM, into the
LaRC DAAC.

InPollingIngestSessio
n

S-INS-00854 The INGST CI shall ingest Data, provided by the ASF Receiving
Ground Station (RGS) via a network interface using a file transfer
protocol.

InSession

S-INS-00856 The INGST CI shall ingest Data, provided by the ASF SAR
Processing System (SPS) via a network interface using a file
transfer protocol.

InSession

S-INS-00870 The ICLHW CI at the GSFC DAAC shall be capable of ingesting
data .for EDOS/ECOM interface testing.

ICLHW

S-INS-00880 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data for EDOS/ECOM interface testing.

ICLHW

S-INS-00900 The INGST CI at the GSFC DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00910 The INGST CI at the LaRC DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00920 The INGST CI at the MSFC DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00925 The INGST CI at the EDC DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00927 The INGST CI at the NSIDC DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00929 The INGST CI at the ASF DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00930 The INGST CI at the JPL DAAC shall be capable of 200 percent
expansion in throughput without architecture or design change.

InRequestManager

S-INS-00990 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from the SDPF at the nominal daily rate specified in Table E-
3 of Appendix E of the current version of 304-CD-002 for Release
A.

ICLHW

S-INS-01000 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from the SDPF at a maximum daily rate that is three times the
nominal rate specified in Table E-3 of Appendix E of the current
version of 304-CD-002 for Release A.

ICLHW

S-INS-01030 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data, by network data transfer from the NESDIS, at the nominal
daily rate specified in Table E-3 of Appendix E of the current
version of 304-CD-002 for Release A.

ICLHW

S-INS-01035 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data, by network data transfer from NESDIS, at the nominal daily
rate specified in Tables E-3a and E-3b of appendix E of the current
version of 304-CD-005 for Release B.

ICLHW

Table A-1. Requirements Trace (11 of 17)

A-12 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-01040 The INGST CI at the LaRC DAAC shall be capable of receiving
data from the SDPF once per day within 24 hours of the last
acquisition Client Session.

ICLHW

S-INS-01050 The ICLHW CI at the MSFC DAAC shall be capable of ingesting
data from the SDPF at the nominal daily rate specified in Table E-
3 of Appendix E of the current version of 304-CD-002 for Release
A.

ICLHW

S-INS-01060 The ICLHW CI at the MSFC DAAC shall be capable of ingesting
data from the SDPF at a maximum daily rate that is three times the
nominal rate specified in Table E-3 of Appendix E of the current
version of 304-CD-002 for Release A.

ICLHW

S-INS-01100 The INGST CI at the MSFC DAAC shall be capable of receiving
data set from the SDPF once per day within 24 hours of the last
acquisition Client Session.

ICLHW

S-INS-01136 The ICLHW CI at the GSFC DAAC shall be capable of ingesting
data from the DAO at the nominal daily rate specified in Table E-3
of Appendix E of the current version of 304-CD-002 for Release A.

ICLHW

S-INS-01137 The ICLHW CI at the GSFC DAAC shall be capable of ingesting
data from the NMC at the nominal daily rate specified in Tables E-
3a and E-3b of Appendix E of the current version of 304-CD-005
for Release B.

ICLHW

S-INS-01138 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from the DAO at the nominal daily rate specified in Table E-3
of Appendix E of the current version of 304-CD-002 for Release A.

ICLHW

S-INS-01140 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from the NMC at the nominal daily rate specified in Tables E-
3a and E-3b of Appendix E of the current version of 304-CD-005
for Release B.

ICLHW

S-INS-02000 The INGST CI shall interactively accept Document Scanning/
Digitizing Requests from authorized operations staff for hard copy
media to be ingested.

InInteractiveIngest

S-INS-02010 The INGST CI shall authenticate that the Document Scanning/
Digitizing Request is input by operations staff authorized to ingest
hard copy media.

InInteractiveIngest

S-INS-02020 The INGST CI shall verify that the External Data Provider specified
in a Document Scanning/Digitizing Request is an authorized
provider of hard copy media to be ingested.

InInteractiveIngest

S-INS-02030 The INGST CI shall automatically determine the data volume for
each scanned or digitized file resulting from an interactively
entered Document Scanning/Digitizing Request.

InInteractiveIngest

S-INS-02040 The INGST CI shall report to the Error Log an unauthorized attempt
to interactively request ingest of hard copy media.

InInteractiveIngest

S-INS-02050 The INGST CI shall report Document Scanning/Digitizing Request
status to the submitting operations staff for the following: |a._Hard
copy scanning/digitizing failure |b._Invalid Data Type Identifier
|c._Missing required metadata |d._Metadata parameters out of
range |e._Failure to archive data |f._Unauthorized hard copy
media provider |g._Unauthorized operations staff |h._Successful
archive of data

InInteractiveIngest

Table A-1. Requirements Trace (12 of 17)

A-13 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-03103 "The INGST CI shall extract metadata from ingested data into a
form accepted by the Science Data Server/Document Data Server,
as needed, for the following categories of data:" a. Metadata
parameters stored in a data-set-specific format

InDataPreprocessTas
k

S-INS-03200 The INGST CI shall be capable of operating in an off-line (test)
mode.

InRequestManager

S-INS-03200 The INGST CI shall be capable of operating in an off-line (test)
mode.

InServer

S-INS-03210 The INGST CI shall be capable of accessing test data sets when
operating in off-line (test) mode.

InRequestManager

S-INS-60110 The ICLHW CI shall support the hardware resource requirements
of the INGST CI and its interface requirements with the operations
staff.

ICLHW

S-INS-60150 The ICLHW CI shall have provision for Initialization, Recovery, and
an orderly shutdown.

ICLHW

S-INS-60160 Startup and initialization of the ICLHW CI shall be completed within
30 minutes (TBR).

ICLHW

S-INS-60170 Shutdown of the ICLHW CI shall be completed within 30 minutes
(TBR).

ICLHW

S-INS-60190 The ICLHW CI shall have a status monitoring capability. ICLHW

S-INS-60210 The INGST CI shall support a maximum of 300 transactions per
day, as specified for each release and corresponding DAAC sites
in Table E-3e of the current version of 304-CD-002 for Release A.

ICLHW

S-INS-60310 The ICLHW CI shall be capable of operating in a 24 hour per day,
7 days a week mode.

ICLHW

S-INS-60320 The ICLHW CI shall be configured to support the SDPS function of
Receiving Science Data's Availability requirement of .999 and
Mean Down Time requirement of < 2 hours during times of staffed
operation.

ICLHW

S-INS-60325 The ICLHW CI shall be configured to support the SDPS function of
Metadata Ingest and Update's Availability requirement of .96 and
Mean Down Time requirement of 4 hours or less.

ICLHW

S-INS-60326 The maximum down time of the ICLHW CI shall not exceed twice
the required MDT in 99 percent of failure occurrences.

ICLHW

S-INS-60330 The ICLHW CI elements and components shall include the on-line
(operational mode) and off-line (test mode) fault detection and
isolation capabilities required to achieve the specified operational
availability requirements.

ICLHW

S-INS-60410 The ICLHW CI shall provide maintenance interfaces to support the
function of System Maintenance.

ICLHW

S-INS-60420 The ICLHW CI shall provide operations interfaces to support the
function of System Maintenance.

ICLHW

S-INS-60430 The ICLHW CI platforms shall have provision for interfacing with
one or more Local Area Networks (LANs).

ICLHW

S-INS-60510 The electrical power requirements for ICLHW CI equipment shall
be in accordance with and the ECS Facilities Plan (DID 302/DV2).

ICLHW

Table A-1. Requirements Trace (13 of 17)

A-14 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-60540 The air conditioning requirements for ICLHW CI equipment shall
be in accordance with the ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60550 The grounding requirements for ICLHW CI equipment shall be in
accordance with ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60560 The fire alarm requirements for ICLHW CI equipment shall be in
accordance with ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60570 The acoustical requirements for ICLHW CI equipment shall be in
accordance with ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60580 The physical interface requirements between ICLHW CI
equipment and the facility shall be in accordance with ECS
Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60590 The footprint size and the physical layout of ICLHW CI equipment
shall be in accordance with the ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60605 The ICLHW CI shall support test activities throughout the
development phase.

ICLHW

S-INS-60610 The following testing shall be performed on the ICLHW CI:a. Unit
Testingb. Subsystem testingc. Integration & Testingd. End-to-End
testing

ICLHW

S-INS-60620 Internal testing shall be performed on the ICLHW CI which includes
tests of hardware functions, and integration testing with other
SDPS subsystems.

ICLHW

S-INS-60630 Internal testing shall be performed on the ICLHW CI to verify the
internal interfaces to the Data Management, Client, Data Server,
Planning, and Data Processing subsystems.

ICLHW

S-INS-60640 Each ICLHW CI element shall be capable of supporting end-to-end
test and verification activities of the EOS program including during
the pre-launch, spacecraft verification, and instrument verification
phases.

ICLHW

S-INS-60650 The ICLHW CI shall be capable of being monitored during testing. ICLHW

S-INS-60660 The ICLHW CI shall include the on-line (operational mode) and off-
line (test mode) fault detection and isolation capabilities required
to achieve the specified operational availability requirements.

ICLHW

S-INS-60733 The ICLHW CI shall contain the storage and interface resources to
support the ingest functions for the Landsat 7 Processing System
interface at EDC.

ICLHW

S-INS-60736 The ICLHW CI at the GSFC DAAC shall be sized to store and
maintain the volume of EDOS data for a 1 year period of time as
specified in Appendix E (Section E.1 Table E-1, Section E.2 Table
E-2, and Section E.3 Tables E-3a and E-3b) of the current version
of 304-CD-005.

ICLHW

S-INS-60740 The ICLHW CI at the LaRC DAAC shall be sized to store and
maintain the volume of SDPF data for a 1 year period of time as
specified in Table E-3 of Appendix E of the current version of 304-
CD-002 for Release A.

ICLHW

Table A-1. Requirements Trace (14 of 17)

A-15 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-60741 The ICLHW CI at the LaRC DAAC shall be sized to store and
maintain the volume of EDOS data for a 1-year period of time as
specified in Appendix E (Section E.1, Table E-1, Section E.2 Table
E-2, and Section E.3 Tables E-3a and E-3b) of the current version
of 304-CD-005.

ICLHW

S-INS-60745 The ICLHW CI at the MSFC DAAC shall be sized to store and
maintain the volume of SDPF data for a 1 year period of time as
specified in Table E-3 of Appendix E of the current version of 304-
CD-002 for Release A.

ICLHW

S-INS-60746 The ICLHW CI at the JPL DAAC shall be sized to store and
maintain the volume of ADEOS II data for a 1-year period of time
as specified in Appendix E (Section E.1 Table E-1, Section E.2
Table E-2, and Section E.3 Tables E-3a and E-3b) of the current
version of 304-CD-005.

ICLHW

S-INS-60748 The ICLHW CI at the JPL DAAC shall be sized to store and
maintain the volume of ALT-RADAR data for a 1-year period of
time as specified in Appendix E (Section E.1 Table E-1, Section
E.2 Table E.2 Table E-2, and Section E.3 Tables E-3a and E-3b)
of the current version of 304-CD-005.

ICLHW

S-INS-60750 The ICLHW CI at the GSFC DAAC shall be sized to temporarily
store ingest data to support early testing of the EDOS interface.

ICLHW

S-INS-60751 The ICLHW CI at the GSFC DAAC shall be sized to temporarily
store the volume of EDOS data as specified in Appendix E (Section
E.1 Table E-1, Section E.2 Table E-2, and Section E.3 Tables E-
3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-60755 The ICLHW CI at the LaRC DAAC shall be sized to temporarily
store two times the daily volume of SDPF data as specified in Table
E-3 of Appendix E of the current version of 304-CD-002 for
Release A.

ICLHW

S-INS-60756 The ICLHW CI at the LaRC DAAC shall be sized to temporarily
store the volume of EDOS data as specified in Appendix E (Section
E.1 Table E-1, Section E.2 Table E-2, and Section E.3 Tables E-
3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-60760 The ICLHW CI at the MSFC DAAC shall be sized to temporarily
store two times the daily volume of SDPF data as specified in Table
E-3 of Appendix E of the current version of 304-CD-002 for
Release A.

ICLHW

S-INS-60765 The ICLHW CI shall have a switchover time from the primary
science data receipt capability to a backup capability of 15 minutes
or less.

ICLHW

S-INS-60770 The ICLHW CI at the EDC DAAC shall be sized to temporarily store
the volume of Landsat 7 data as specified in Appendix E (Section
E.1 Table E-1, Section E.2 Table E-2, and Section E.3 Tables E-
3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-60771 The ICLHW CI at the JPL DAAC shall be sized to temporarily store
the volume of ALT-RADAR data as specified in Appendix E
(Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

Table A-1. Requirements Trace (15 of 17)

A-16 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-60772 The ICLHW CI at the JPL DAAC shall be sized to temporarily store
the volume of ADEOS II data as specified in Appendix E (Section
E.1, Table E-1, Section E.2 Table E-2, and Section E.3 Tables E-
3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-60810 The operating system for each UNIX platform in the ICLHW CI
shall conform to the POSIX.2 standard.

ICLHW

S-INS-60820 The ICLHW CI POSIX.2 compliant platform shall have the
following utilities installed at a minimum: perl, emacs, gzip, tar,
imake, prof, gprof, nm.

ICLHW

S-INS-60830 The ICLHW CI POSIX.2 compliant platform shall have the
following POSIX.2 user Portability Utilities installed at a minimum:
man, vi.

ICLHW

S-INS-60840 The ICLHW CI POSIX.2 compliant platform shall have the
following POSIX.2 Software Development Utilities installed at a
minimum: make.

ICLHW

S-INS-60850 The ICLHW CI POSIX.2 compliant platform shall have the
following POSIX.2 C-Language Development Utilities installed at a
minimum: lex, yacc.

ICLHW

S-INS-60860 The ICLHW CI POSIX.2 compliant platform shall have the
following Unix shells installed at a minimum: C shell, Bourne shell,
Korn shell.

ICLHW

S-INS-60870 The ICLHW CI POSIX.2 compliant platform shall have on-line
documentation or printed documentation for each installed tool.

ICLHW

S-INS-60880 The ICLHW CI POSIX.2 compliant platform shall have installed
one or more development environment supporting the following
languages:a. Cb. C++

ICLHW

S-INS-60890 Each development environment associated with the POSIX.2
compliant platform in the ICLHW CI shall have the capability to
compile and link strictly conformant POSIX-compliant source code.

ICLHW

S-INS-60895 Each development environment associated with the POSIX.2
compliant platform in the ICLHWCI shall have an interactive
source level debugger for ECS supported languages.

ICLHW

S-INS-60900 The INGST CI shall provide the necessary hardware/software to
perform scanning and/or digitizing of hardcopy documents for the
purpose of imputting document request from authorized users.

ICLHW

S-INS-61000 The ICLHW CI at the GSFC DAAC shall be capable of ingesting
data from the EDOS at the nominal daily rate specified in Appendix
E (Section E.1, Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-61010 The ICLHW CI at the GSFC DAAC shall be capable of ingesting
data from the EDOS at a maximum daily rate that is three times the
nominal rate specified in Appendix E (Section E.1, Table E-1,
Section E.2 Table E-2, and Section E.3 Tables E-3a and E-3b) of
the current version of 304-CD-005.

ICLHW

S-INS-61020 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from the EDOS at the nominal daily rate specified in Appendix
E (Section E.1, Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

Table A-1. Requirements Trace (16 of 17)

A-17 305-CD-025-002

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-61025 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from the EDOS at a maximum daily rate that is three times the
nominal rate specified in Appendix E (Section E.1, Table E-1,
Section E.2 Table E-2, and Section E.3 Tables E-3a and E-3b) of
the current version of 304-CD-005.

ICLHW

S-INS-61030 The ICLHW CI at the EDC DAAC shall be capable of ingesting data
from the Landsat 7 Processing System (LPS) at the nominal rate
specified in Appendix E (Section E.1, Table E-1, Section E.2 Table
E-2, and Section E.3 Tables E-3a and E-3b) of the current version
of 304-CD-005.

ICLHW

S-INS-61040 The ICLHW CI at the EDC DAAC shall be capable of ingesting data
from the Landsat 7 IAS at the nominal daily rate specified in
Appendix E (Section E.1, Table E-1 Section E.2 Table E-2, and
Section E.3 Tables E-3a and E-3b) of the current version of 304-
CD-005.

ICLHW

S-INS-61050 The ICLHW CI at the EDC DAAC shall be capable of ingesting data
from the Landsat 7 IGSs at the nominal daily rate specified in
Appendix E (Section E.1, Table E-1, Section E.2 Table E-2, and
Section E.3 Tables E-3 Tables E-3a and E-3b) of the current
version of 304-CD-005.

ICLHW

S-INS-61080 The ICLHW CI at the GSFC DAAC shall be capable of ingesting
data from the NMC at the nominal daily rate specified in Appendix
E (Section E.1, Table E-1 and Section E.2 Table E-2, and Section
E.3 Tables E-3a and E-3b of the current version of 304-CD-005.

ICLHW

S-INS-61110 The ICLHW CI at the JPL DAAC shall be capable of ingesting data
from RADAR-ALT at the nominal daily rate specified in Appendix E
(Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-61115 The ICLHW CI at the JPL DAAC shall be capable of ingesting data
from ADEOS II at the nominal daily rate specified in Appendix E
(Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-61140 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from SAGE III at the nominal daily rate specified in Appendix
E (Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-61150 The ICLHW CI at the ASF DAAC shall be capable of ingesting data
from the ASF RGS at the nominal daily rate specified in Appendix
E (Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-61160 The ICLHW CI at the ASF DAAC shall be capable of ingesting data
from the ASF SPS at the nominal daily rate specified in Appendix
E (Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

S-INS-61170 The ICLHW CI at the LaRC DAAC shall be capable of ingesting
data from ACRIM at the nominal daily rate specified in Appendix E
(Section E.1 Table E-1, Section E.2 Table E-2, and Section E.3
Tables E-3a and E-3b) of the current version of 304-CD-005.

ICLHW

Table A-1. Requirements Trace (17 of 17)

A-18 305-CD-025-002

This page intentionally left blank.

B-1 305-CD-025-002

Appendix B. Program Design Language (PDL)

The Ingest Program Design Language (PDL) for non-trivial operations is included in this
appendix. The PDL is sorted by object class and by object class operation. C++ syntax is used to
identify object class operations (e.g., InBOMetadata::Preprocess indicates the Preprocess
operation of the InBOMetadata object class). The PDL follows the standards set up in the PDL
Program Instruction addendum to the Software Development Plan.

InBOMetadata::Preprocess

Call InMetadataTool::PGS_MET_INITt o load target MCF into memory
Call InFile::Read to read metadata file into memory
DoWhile(Call InMetadataTool::GetNext=True)

Call InSourceMCF::GetParInfo to obtain location of value associated with target
parameter name
Read value from appropriate location
If (Data is Binary) Then
Call ConvertBintoASCII to map binary expression to corresponding ASCII string via Look

Up Table
EndIf
Call InMetadataTool::PGS_MET_SET to set the value of attribute in target MCF

End DoWhile

int InDAN::Check(char *DAAmsgPtr)

Open the DAA Error File; the file would contain one of the following code:
1. Accepted
2. Invalid DAN Sequence number
3. Invalid File Count
4. Invalid Data Service
5. Invalid Aggregate Length
6. Invalid Data Type
7. Invalid Directory
8. Invalid Time Stamp Format
9. Invalid Generation Time Format
10. Invalid File Size Field
11. Invalid Time/Date Format

Read the DAA Error code from the DAA file
Close the DAA Error File
if DAA Error code is 1-5
 Construct the InShortDAA class
 Call InShortDAA.FillDAA() to package the DAA message using DAA Error code

B-2 305-CD-025-002

 and myDANSeqNo
else
 For each entry in myDataTypeList[]

 Assign DAA Error code to DAAStatus[i]
 Assign myDataTypeList[i].DataTypeId to DataType[i]
 Assign myDataTypeList[i].DatDescriptor to DataDescriptor[i]

 End for
 Construct the InLongDAA class
 Call InLongDAA.FillDAA() to package the DAA message using DAAStatus[],

 DataType[],DataDescriptor[], myDataTypeCount, and myDANSeqNo
endif
return

InDAN::InDAN(char *DANFile, char *DAAmsgPtr, int status)

Get the total byte size of DANFile
Allocate PVL-Buffer with total DANFile byte size
Open DANFile
Read the whole DANFile into PVL-Buffer
Close DANFile
Call ParsePVL() passing the PVL-Buffer address and the DANFile size to
 extract PVL keywords and Keyword-Values from the PVL-Buffer
Call Check() to verify the DAN components and fills the verification
 results in the DAA data message

InDAN::InDAN(DANmsg *DANmsgPtr, char *DAAmsgPtr, int DAAlength, int status)

Calculate the total bytes of MsgHeader, EDU_Label, DAN_Label and
 assign to HdrLen
Set PVLptr to HdrLen byte after the first byte of DANmsgPtr
Extract the TotalMessageLength from MsgHeader
Calculate the PVLlen by subtracting TotalMessageLength from HdrLen
Call ParsePVL() passing the PVLptr and PVLlen
Call Check() to verify the DAN components and fills the verification
 results in the DAA message
return

int InDAN::ExtractKeyword(char *PVL_stmt, char *Keyword, char *Keyword_Value)

*** Task complete by parser() ***
Search for 1st alphanumeric position in PVL_Stmt and assign to StartPtr
Set PVL_Stmt to Key_StartPtr
Search for 1st non-alphanumeric position in PVL_Stmt and assign to EndPtr
Extract StartPtr to EndPtr from PVL_Stmt and assign to Keyword
Call ExtractValue to extract the keyword value

B-3 305-CD-025-002

return

int InDAN::ExtractPVLStmt(char* PVL_Buffer, char *PVL_stmt, int PVL_Stmt_Len)

*** Task complete by parser() ***
Search for 1st alphanumeric position in PVL_Buffer and
 assign to StartPtr
Search for ';' in PVL_Buffer and assign pocation to EndPtr and PVL_Stmt_Len
Extract PVL_Stmt from PVL-Buffer starting StartPtr byte to Stmt_EndPtr -1
return

int InDAN::ExtractValue(char *PVL_stmt, char *Keyword_Value)

Task complete by parser()
Search for 1st alphanumeric position after '=' in PVl_stmt and assign
 position to StartPtr
Search for 1st non-alphanumeric position after StartPtr and assign
 position to EndPtr
Extract StartPtr to EndPtr from PVL_Stmt and assign to Keyword-Value
return

int InDAN::ExtractValue(char *PVL_Stmt, char *Keyword_Value)

 Task complete by parser()
 return SUCCESS;

int InDAN::FillData (char *IngestType, char *ParsedKeywords)

Copy DAN information from daninfo data structure to the private
 member data structure.

return

InDAN::CreateDANGranuleFiles (RWstring& DANfile)

Creates DAN Granule files from the original DAN file. Each DAN Granule file will have suffi-
cient header data to be considered a single granule DAN file.

Do for all granules in the DAN

Construct a DAN Granule File Name by adding the GranuleID to the original DAN file
name

Open DAN file
Process open error, log, notify user, return
Open DAN Granule File

B-4 305-CD-025-002

Process open error, log, notify user, return
If no open errors

Read any DAN header PVL statements from DAN header which will be needed
for remote processing of the DAN Granaule

Process Read errors, log, notify user, return
If no error

Write needed header statements to DAN Granule File
Process write errors, log, notify user, return

Endif
If no error

Read Granule (File Group) PVL statements
Process Read Error, log, notify user, return

Endif
If no error

Write Granule PVL statements to DAN Granule File
Process write error, log, notify user, return

Endif
Endif

Enddo
EndPDL

int InDAN::ParsePVL(char* PVL_Buffer, int PVL_Len)

If PVL_Len is greater than 0 then call parse()
Call FillDAN() to put the extracted PVL statements into the

InDAN class data memory
return

int InDAN::GetDANSeq(void)

return DANSeqNum

InDataPreprocessTask::Preprocess

BeginPDL
Call InDataTypeTemplate::GetDInfo to obtain a list of all required files
Do While(Call InDataPreprocessList::GetNext=True)

Increment File Counter.. this is a RW list
Store File Name
Get file type of File Name
Store File Type
Increment appropriate file type counter

End Do While

B-5 305-CD-025-002

If (required file types exist) Then
Do While (Counter < number of files)

Call InFileTypeTemplate::GetFTInfo to obtain file type information
Instantiate appropriate preprocessing specialization
If(File Type= Metadata)

Instantiate DsCIDescriptor
Call DsCIDescriptor:GetMCF to obtain target MCF

Else
EndIf

End Do While
Do While(Counter < number of files)

Call appropriate preprocess operation
Call InMetadataTool::PGS_MET_WRITE
Instantiate a new file
If(File Type=Metadata) Then

Call DsCIDescriptor::Validate
If (Validate Fails) Then

Log Errors
Flag Metadata

Else
EndIf

Else
End If

Enddo
Else
Send Failure status back to InDataPreprocessTask
EndIf
EndPDL

InDataServerInsertionTask::SendInsert

BeginPDL
Call DsCIESDTReferenceCollector::DsCIESDTReferenceCollector to set up Data Server session
Call DsCICommand::DsCICommand to instantiate command object and reference advertisement
Call DsCICommand::SetParameters to include list of file types to be inserted
Call DsCIRequest::DsCIRequest to instantiate object and reference associated Command objects
Call DSClRequest::Submit
Return
EndPDL

InDataTransferTask::TransferDataGranule (RWString DANGranleFileName)

BeginPDL
Construct InDan object from the InDANGranuleFile .. The InDANGranuleFile should look just
like a regular DAN file, but it will contain only one granule.
Clear DBHeader Error Flag

B-6 305-CD-025-002

Allocate Staging Disk and Network Resouces
If Failure

Set DBHeader error flag
Do for each file in DANGranuleFile
 Call InRequestFileInfo::UpdateFileStatus (ECSResourceAllocationFailure, Request-

ID,GranuleID, FileName)
Enddo

Else
Do for each file in the DAN Granule

Construct InFile object
Call InFile::Transfer
If Error

Set DBHeader error flag
 Call InRequestFileInfo::UpdateFileStatus

(ECSFileTransferFailure, RequestID,GranuleID,
FileName)

Do for the rest of files in DAN Granule
 Call InRequestFileInfo::UpdateFileStatus
(ECSFileTransferAbort, RequestID,GranuleID,

FileName)
Enddo
Break out of upper do loop

Else
Call CheckGranuleState (ResultingAction)
If (ResultingAction is "Cancel")

Update Return status
Return

Else
Add file to InDataPreprocessingList

 Call InRequestFileInfo::UpdateFileStatus
(Success, RequestID,GranuleID,

FileName)

Endif
Endif

Enddo
If DBHeader Error

set EcUtStatus to Failed
Else

set EcUtStatus to Success
Endif
Return EcUtStatus

Endif
Return
EndPDL

B-7 305-CD-025-002

InGranuleAsync_C::Cancel

This routine overloads EcSrAsynchReqeust_C::Suspend It will send a message to the
InGranuleAsync_S object to suspend remote processing

BeginPDL
Call EcStAsynchRequest_C::Cancel to notify the InGranuleAsync_S object to suspend.

This is a synchronous call so when it returns, the object has suspended
Delete granule from RWlist InGranuleList
Return EcUtStatus
EndPDL

InGranuleAsync_C::Complete

This routine overloads EcSrAsynchReqeust_C::Complete. It will signal that a granule has com-
pleted processing
BeginPDL
Delete granule from RWlist InGranuleList
Call EcStAsynchRequest_C::Complete to perform generic completion activities
(Note all granule status will be available in the InRequestProcessData DB table when needed for
DDN building)
Return EcUtStatus
EndPDL

InGranuleAsync_C::InGranuleAsync_C (InGranuleAsyncReqeust_s& ctorMSG):
EcCsAsynchReqeust_C(ctorMSG)
Constructor
BeginPDL

... inherites from EcCsAsynchReqeust_C
set myServerUR to ctorMsg.GetUR():

EndPDL

InGranuleAsync_C::~InGranuleAsync_C (void)

 Destructor -- nothing to do here ---- EcSrAsynchRequest_c should take care of everything

InGranuleAsync_C::StateChange

BeginPDL
When a state change notification request is received, appropriate resource utilization states are dec-
remented
Initialize state change count to 0 when the object is created
Increment StateChangeCount

B-8 305-CD-025-002

If StateChangeCount equals 1
Decrement network resource utilization

Elseif StateChangeCount equals 2
Decrement processing utilization (for the remote node)

Elseif StateChangeCount equals 3
Decrement Archive Process statistics (for appropriate archive)

Else
Process error message, log error

endif
Return
EndPDL

InGranuleAsync_C::Suspend

This routine overloads EcSrAsynchReqeust_C::Suspend It will send a message to the
InGranuleAsync_S object to cancel (same as suspend to Granule Processing) remote processing .
Note that a Resume function is not necessary, when a granule is resumed, InGranuleServer_C will
send a ResumeFlag with the ProcessGranule Message.

BeginPDL
Call InGranuleAsync_C::Cancel Note that suspending a remote granule will actually cancel it.
Return EcUtStatus
EndPDL

InGranuleAsync_S::Cancel

BeginPDL
If EcSrAsynchReqeust_S myState is "Allocating Resources"

Call InDataTransmitTask::CancelResource to Send Resource Manager Cancel Command
Elseif EcSrAsynchReqeust_S myState is "Inserting"

Call InDataServerInsertionTask::SendCancel to Send DsClSubmit Cancel Command
endif
Call EcSrAsynchRequest_S::Cancel ... I am assuming the Default action here is to set myState to
Cancel
Return
EndPDL

InGranuleAsync_S::SetPriority

BeginPDL
If EcSrAsynchReqeust_S myState is "Allocating Resources" for disk space or transfer

Call InDataTransmitTask::SetPriorityResources or SetPriorityTransferto Send Resource
Manager Set Priority Command
Elseif EcSrAsynchReqeust_S myState is "Inserting"

Call InDataServerInsertionTask::SendPriority to Send DsClSubmit Set Priority Command
endif

B-9 305-CD-025-002

Call EcSRAsynchRequest_S::SetPriority
Return
EndPDL
InGranuleAsync_S::Suspend

Note:: A cancel is sent to Resouces manager if resources are being allocated, not a suspend
If EcSrAsynchReqeust_S myState is "Allocating Resources"

Call InDataTransferTask::Cancel to Send Resource Manager Cancel Command
Elseif EcSrAsynchReqeust_S myState is "Inserting"

Call InDataServerInsertionTask::SendSuspend to Send DsClSubmit Suspend Command
endif

Call EcSRAsynchRequest_S::Suspend

InGranuleAsync_S::CheckGranuleState (EcTInt RequestID, EcTInt GranuleID, RW-
String ResultingAction)

This routine will check to see if a granule state change has occurred. ResultingActions will be
returned to the caller to provide "what next" processing directions.

 Get GraunuleState from EcSrAsynchRequest_S::GetState
 Process error status returned from a RequestState function call, log error, notify operator, set
error status and return

 If ReqeustState is not equal to active
If GranuleState is equal to "cancel"

Set ResultingAction to "Cancel"
ElseIf GranuleState is equal to "suspend"

Set ResultingAction to "Cancel" suspend and cancel are handled the same way
Else ... error state Note: resume/recover is not sent to a granule and set priority is han-

dled totally by our overloaded InGranuleAsync_S::SetPriority function.
Notify operator of error ... invalid Request state is specified
Log error
Return

Endif
 Endif
Return
EndPDL

InGranuleAsync_S::Execute

This routine will process the Granule. Processing steps include 1. Transferring all files referenced
in the DanGranuleFileName file, 2. Preprocessing all transferred files, 3. Inserting Granule into the
DataServer for Archiving

B-10 305-CD-025-002

Construct InDataTransferTask Object (myDANGranuleFileName, ResumeFlag, DataTypeID,
TransferredFileList)
Call InDataTransferTask::TransferData (RequestID, GranuleID)
If good status

Call CheckGranuleState (RequestID, GranuleID, ResultingAction)
 If ResultingAction is "Cancel"

Call InGranuleAsync_S:::Cancel
 to cleanup and also to notify client of completion of granule

return
Endif
Call EcSrAsynchRequest_C::StateChange ... this call will notify InGranuleAsync_C that

the 1st state
change (files have been transferred) has occurred)
InGranuleAsync_C will decrement network resource
utilization stats

Construct InDataPreprocessTask(DataTypeID, &preprocessList) object

Call InDataPreprocessTask ()
Process returned error status
If good status

Call InRequestProcessData::UpdateGranuleState(RequestID,GranuleId) to "pre-
processed"

Call CheckGranuleState (RequestID,GranuleID, ResultingAction)
Process error status
If Good Status

If ResultingAction is "Cancel"
Call InGranuleAsync_S:::Cancel

 to cleanup and also to notify client of granule cancellation
return

Endif
Call EcSrAsynchRequest_C::StateChange ... this call will notify

InGranuleAsync_C that the 2nd state
change (files have been preprocessed has occurred)
InGranuleAsync_C will decrement resource
utilization stats

Construct InDataServerInsertion Task object InsertObject
Call InDataInsertionTask::SendInsert (InsertObject)
Process Error Status
If Good Status

Call InRequestProcessData::UpdateGranuleState
(RequestID,GranuleID, "Archived")

Call EcSrAsynchRequest_C::StateChange ... this call will notify
InGranuleAsync_C that the 3rd state

change (files have been archived) has occurred)
InGranuleAsync_C will decrement resource

B-11 305-CD-025-002

utilization stats
ElseSendInsert Error

Call InRequestProcessData: UpdateGranuleState
(RequestId,GranuleID, "ArchiveFailed")

Endif
Else ...Preprocess Error

Call InRequestProcessData: UpdateGranuleState
(RequestId,GranuleID,"PreprocessFailed")

Endif
Else ... Transfer Error

Call InRequestProcessData: UpdateGranuleState
(RequestId,GranuleID, "TransferFailed")

Endif
Endif
EndPDL
InGranuleAsync_S::InGranuleAsync_S(RWString &DANGranuleFileName, EcTBoolean
ResumeFlag, EcTInt RequestID, EcTInt GranuleID, InGranuleAsync_c*& async)

BeginPDL
Set myDANGranuleFileName
Set myResumeFlag
Set myClientUR
Set myRequestID
Set myGranuleID
EndPDL

InGranuleAsync_S::~InGranuleAsync_S

Destructor

InGranuleServer_S::InGranuleServer_S(EcURUr myUR, EcSrRequestDispatcher* lo-
calServer)

Constructor

InGranuleServer_S::ProcessRequest (RWString &DANGranuleFileName, EcTBoolean
ResumeFlag, EcTInt RequestID, EcTInt GranuleID, InGranuleAsync_c*& async) , re-
turns InGranuleAsync_C*

BeginPDL
Create a new request InGranuleAsync_S from passed in attributes
Add the created request to the request queue
Create new client request by creating a new InGranuleAsync_C(new InGranuleAsync_S request)
Return (new client request) ... to ReceiveMsgRAcceptance
EndPDL

B-12 305-CD-025-002

InGranuleServer_C::InGranuleServer_C(EcUrUR serverUR):EcCsRequestServer_C(serv-
erUR)

BeginPDL
Connect() ... This function is inherited from EcCsReqeustServer_C

EndPDL

InGranuleServer_C::~InGranuleServer_C(void)

BeginPDL

Disconnect(): ... This function is inherited from EcCsReqeustServer_C
EndPDL

InGranuleServer_C::ProcessGranule(RWString &DANGranuleFileName, EcTBoolean Re-
sumeFlag, EcTInt RequestID, EcTInt GranuleID, InGranuleAsync_c*& async)

This routine builds and send Granule Process request message to the remote server
Note RequestID and GranuleID are passed so that the remote server can update the data base to
checkpoint state information

BeginPDL

Create ProcessGranule Message (i.e new ProcessGranuleMsg (DANGranuleFileName, Resume-
Flag) .. (Note:: the DANGranuleFileName is the result of calling InDAN::CreateDAN-
GranuleFiles,

 The ResumeFlag is true if a granule is being resumed, otherwise false. Note that
 when a granule is suspended, remote async objects are deleted)

Send Process Granule message to the server via the EcMhMsgHandler::SendMsgRAcceptance
(myServerUR, ProcessGranuleMessage, (EcUtStreamable*&)async)

If status is good
Add InGranuleAsync_C reference to RWlist InGranuleList, set Granule Status to "Active"

Return (EcUtStatus)

EndPDL

InGranuleServer_S::Main

This is the driver module for InGranuleServer_S
BeginPDL
init Process Framework , registar metric files, get configuration parameter?,

Call PFStart

B-13 305-CD-025-002

End
EndPDL

InGranuleServer_S::ReceiveMsgRAcceptance(EcCsMsg* newMessage, EcURUr* clien-
tUR);

Receives requests sent from InGranuleServer_C client software to process the Granule.

BeginPDL
Instantiate an InGranuleAsync_C object
Extract message class ID from the new message
Based on ID, verify the message received is a Process Granule message .. the only type a message
we expect on the server level

Get DAN Granule file name from the message
Get ResumeFlag from the message..
Get RequestID from the message.
GetGranuleID from the message.

Call InGranuleServer_S::ProcessGranule to initiate the processing of the Granule by
InGranuleAsync_C,
Returns (EcUtStreamable*) theInGranuleAsync_C.

EndPDL

InHDFMetadata::Preprocess()

BeginPDL

Call InMetadataTool::PGS_MET_INIT to read target MCF into memory

Call appropriate HDF I/O tools to read file metadata

Identify HDF metadata object

DoWhile(Call InMetadataTool::GetNext=True)

Compare target parameter name with file string

Call InMetadataTool::PGS_MET_SET to set the value of attribute in target MCF

End DoWhile

EndPDL

InInteractiveIngest::ProcessUserName (RWString UserName)

BeginPDL

Get UserName and validate
Report validation error to user

B-14 305-CD-025-002

Return

EndPDL

InInteractiveIngest::GetDANHeader(RWList HeaderInformation)

BeginPDL

Get DAN Header information from Form (originating system, consumer system, sequence num-
ber, expiration time if applicable
Call InDAN::ValidateHeader .. to validate
If error

notify user, Log eror
Endif

Return
EndPDL

InInteractiveIngest:GetDataTypeInformation(RWList DataTypeInformation)

BeginPDL

Get DAN Data Type information from Form (data type, data descriptor, data version)
Call InDAN::ValidateDataType.. to validate
If no error

If Data type is Scanned_document
If Operator has not provided Associated Metadata information

Instuct operator to fill outHTML Document Metadata form
Return

Endif
Endif

Else
Notify user of error, log error

Endif

Return
EndPDL

InInteractiveIngest::ProcessDocumentMetadata

BeginPDL

Get Document Metadata from Form
Validate
Notify user of validation errors, log error
Return
EndPDL

B-15 305-CD-025-002

InInteractiveIngest::ProcessDirSpecSingleDAN (RWString DirectoryName, RWString
DataType, RWList DANHeader)

BeginPDL

Get Directory specification
Call GetDataTypeInformation (RWList DataType)
Call CreateFileList
Do for all files in the FileList

Display file name to user and request file type
 Call DetermineFileSize
Process error, display to user, continue at Do

Enddo

Call BuildDAN(FileList,DataTypeList,DANHeader)
If no errors and "BuildDAN and Ingest" option selected

Call SendRequest to send Ingest Request to InRequestManager

Else
Report error to user, log errors

Endif

EndPDL

InInteractiveIngest::ProcessDirSpecMultiDAN (RWString DirectoryName, RWString
DataType, RWList DANHeader)

BeginPDL

Get Directory specification
Call CreateFileList
Do for all files in List

Call GetDataTypeInformation (RWList DataType)
Display file name to user and request file type
 Call DetermineFileSize
Process error, display to user, continue at Do
Call BuildDDN (FileList,DataTypeList,DANHeader)
If no errors and "BuildDAN and Ingest" option selected

Call SendRequest to send Ingest Request to InRequestManager
Endif

Enddo
Return
EndPDL

InInteractiveIngest::InBuildDAN (RWList FileList, RWList DataType, RWListDANHead-
er)

B-16 305-CD-025-002

BeginPDL
Open file
If no error

Call WriteDANHeader
If no error

Call WriteDANGroup(RWList FileList, RWList DataType)
else

Process error.. notify user, log return

endif
else

Process error.. notify user, log return

endif
EndPDL

InInteractiveIngest::WriteDANGroup(RWList FileList, RWList DataType)

BeginPDL
Write PVLGroup indicator
Process error.. Notify user, log, return
Write Data Type Information in PVL form
Process error.. Notify user.. log,return
Do for all files

Write file spec information
Process error.. notify user ,log, return
Write end of file group

Enddo
EndPDL

InInteractiveIngest::ProcessInteractiveDANSpec (void)

BeginPDL
Call GetDANHeaderInformation
Process errors.. notify user, log go back to Call GetDANHeaderInformation
Call WriteDANHeader
Process errors.. notify user, log return

If valid
Get user option to 1) Build DANand Ingest, or 2) Build DAN only ... DAN could then be

used at a later date for hard media ingest
Do while not DAN complete

Get and Validate DataTypeID
If valid

Do while not DataSetComplete
Get FileName
Get FileLocation

B-17 305-CD-025-002

Get user option to 1) Supply file size interactively, or 2) request Ingest to
access file directory to determine file size

If Ingest should determine file size
Call DetermineFileSize
Process error - display error to user
continue ... go back to do

Endif
Enddo
Call WriteDANGroup

Endif
Enddo ... DAN complete

If no errors and "BuildDAN and Ingest" option selected

Call SendRequest to send Ingest Request to InRequestManager

Endif

Return EcUtStatus

EndPDL

InInteractiveIngest::InDetermineFileSize(RWSTring FileName, RWString FileLocation)

This routine requires that ECS have network access to the file being processed

Begin PDL
If Ingest should determine file size

Call appropriate UNIX utilities to determine file size
Process errors.. notify user, log

If Error
Return EcUtStatus

Endif

Else
Get file size from Form
Process AtoInt errors

Endif

EndPDL

InInteractiveIngest::ProcessDANIngest (void)

Begin PDL

Get DAN file name
Call InDAN::InDAN to construct and validate DAN object

B-18 305-CD-025-002

Process error, notify user,log, return
If no error

Call InDAN::Checkpoint .. to checkpoint DAN file into the Ingest DB
If no error

Send RPC to request Manager to proccess DAN Ingest Request
Else

Notify user,log
Return

Endif
Else

notify user,log
return

Endif
Return EcUtStatus
EndPDL

InInteractiveIngest::ProcessStatusRequest RWString UserName)

BeginPDL

Call InRequestProcessHeader::GetInteractiveUsersStatus (UserName)
Process error , notify user of error, log, return
Display request status
Return

EndPDL

int InLongDAA::FillDAA (int DAAStatus[], char *DataType[], char *DataDescriptor[],
 int DataTypeCount, int DANSeqNo)

If (DANSeqNO is greater than 0)
 Assign DANSeqNo to myLongDAA.DANSequenceNum
 Assign DataTypeCount to myLongDAA.FileGroupCount
 Init MsgLen to LongDAAmsgHeader
 For i = 1 to DataTypeCount
 Assign DAAStatus[i] to myLongDAA.FileGroup[i].Disposition
 Assign DataType[i] to myLongDAA.FileGroup[i].DataType
 Assign DataDescriptor[i] to myLongDAA.FileGroup[i].Descriptor

 Increment MsgLen by the string length of DataType[i]
 and DataDescriptor[i]
 End for
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the least significant 3 bytes of MsgLen to myLongDAA.MsgLength
return

B-19 305-CD-025-002

int InLongDAA::GetDAA(LongDAAmsg *DAAmsg, int DAAmsgLen)

Assign myLongDAA to DAAmsg
Call InMessage::GetMsgLength() and assign to DAAmsgLen
If (DDNmsgLen is <= zero)
 write Empty DAA data message error into the event log
Endif
return

InLongDAA::InLongDAA()

Assign the lease significant byte of InCLongDAAType to myLongDAA.MsgType
return

int InLongDAA::FillDAA (int DAAStatus[], char *DataType[], char *DataDescriptor[],
 int DataTypeCount, int DANSeqNo)

If (DANSeqNO is greater than 0)
 Assign DANSeqNo to myLongDAA.DANSequenceNum
 Assign DataTypeCount to myLongDAA.FileGroupCount
 Init MsgLen to LongDAAmsgHeader
 For i = 1 to DataTypeCount
 Assign DAAStatus[i] to myLongDAA.FileGroup[i].Disposition
 Assign DataType[i] to myLongDAA.FileGroup[i].DataType
 Assign DataDescriptor[i] to myLongDAA.FileGroup[i].Descriptor

 Increment MsgLen by the string length of DataType[i]
 and DataDescriptor[i]
 End for
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the least significant 3 bytes of MsgLen to myLongDAA.MsgLength
return

int InLongDAA::GetDAA(LongDAAmsg *DAAmsg, int DAAmsgLen)

Assign myLongDAA to DAAmsg
Call InMessage::GetMsgLength() and assign to DAAmsgLen
If (DDNmsgLen is <= zero)
 write Empty DAA data message error into the event log
Endif
return

InLongDAA::InLongDAA()

B-20 305-CD-025-002

Assign the lease significant byte of InCLongDAAType to myLongDAA.MsgType
return

int InLongDDN::FillDDN (int DDNStatus, char *FileDir[], char *FileId[],
 int FileCount, int DANSeqNo)

If (DANSeqNo is greater than 0)
 Assign DANSeqNo to myLongDDN.DANSeqNo
 Assign FileCount to myLongDDN.FileCount
 Init MsgLen to byte size of LongDDNmsgHeader
 For i = 1 to FileCount
 Assign DDNStatus[i] to myLongDDN.File[i].Disposition
 Assign FileDir[i] to myLongDDN.File[i].Directory
 Assign FileId[i] to myLongDDN.File[i].FileName

 Increment MsgLen by the string length of FileDir[i] and FileId[i]
 End for
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the least significant 3 bytes of MsgLen to myLongDDN.MsgLength
return

int InLongDDN::GetDDN(LongDDNmsg *DDNmsg, int DDNmsgLen)

Assign myLongDDN to DDNmsg
Call InMessage::GetMsgLength() and assign to DDNmsgLen
If (DDNmsgLen is <= zero)
 write Empty DAA data message error into the event log
Endif
return

InLongDDN::InLongDDN()

Assign the lease significant byte of InCLongDDNType to myLongDDN.myMsgType
Return

InMediaIngest::GetBarCode(RWString BarCode)

Note: I have not seen the requirement for Bar Code readers yet!

BeginPDL
Call DsStResourceProvider::GetBarCode(RWString BarCode)
Process error

B-21 305-CD-025-002

If no error
Display BarCode on GUI

Endif

Return EcUtStatus
EndPDL

InMediaIngest::ProcessRequest(void)

BeginPDL

Get Tape ID input method from GUI Screen
If method is BarCode

Call DsStResourceProvider::GetBarCodeReaderResource
Process Error status
If no error

update TapeIDMethod to indicate BarCode
Else

Return EcUtStatus Failed
Endif

Else
Update TapeIDMethod to indicate user supplied

Endif

Set EcUtStatus to Success
EndPDL

int InMessage::GetMsgLength(char *MsgPtr)

If (MsgPtr is not NULL)
 Move 2nd to 4th byte from MsgPtr and assign to MsgLen
else
 Assign zero to MsgLen
endif
return MsgLen

InMessage::InMessage()

Return
InPollingIngestSession::ProcessRequest

BeginPDL
Prcessing wakes up on polling inervals

InDAN::CheckpointRequest

B-22 305-CD-025-002

Access MSS configuration files ::GetPriority to get the current request priority
Process error by notifying operator and updating log
Call InExternalDataProviderThreshold::GetState to get the current state of the external Data Pro-
vider
Process errors by writing to log .. continue with request
Process directory
Build DAN
If State is equal to suspend

set DAA status to indicate the request has failed since ECS has suspended the External
DataProviders Session

Set request failure status
return

Else
Send DAN request to InRequestManager

Endif
Go wait for next polling interval
EndPDL

InPVMetadata::Preprocess()

Call InMetadataTool::PGS_MET_INIT to load target MCF into memory
DoWhile(Call InMetadataTool::GetNext=True)

Call InSourceMCF::GetParInfo to match target parameter name with source parameter
name

Call InFile::Read to read metadata file into memory
DoUntil(Source Parameter=File String)

Compare Source Parameter with File String
End Do Until
Extract value from parameter -value statement
Call InMetadataTool::PGS_MET_SET to set the value of attribute in target MCF

End DoWhile

InRequest::Cancel (RWString ResultingAction)

Begin PDL
Call InRequest.NotifyRemoteGranules(RequestID, MsgType) .. to cancel remote granule process-
ing
If returned status is bad

Log error, set "detail", so that a single message will go to operator when request cancel-
lation is complete

Return
Endif
Set ResultingAction to "Cancel"
Return status
End PDL

B-23 305-CD-025-002

InRequest::CheckRequestState(EcTInt *GranuleID, EcTInt ResultingAction)

This routine will check to see if a request state change has occurred. If a state change has occurred,
the routine will call the appropriate functions to perform the change. ResultingActions will be re-
turned to the caller to provide "what next" processing directions.

 Get request state from InReqeust object ::GetRequestState
 If ReqeustState is not equal to active

If RequestState is equal to "cancel"
Call InRequest::Cancel(RequestID, ResultingAction), return status

ElseIf RequestStat is equal to "suspend"
Call InRequest::Suspend (RequestID, ResultingAction), return status

ElseIF ReqeustState is equal to "set priority"
Call InRequest::SetPriority(RequestID, ResultingAction), return status

ElseIf RequestState is equal to "resume" ... Note that Resume and Recover act on a sin-
gle granule whereas the other RequestState func-
tions will

affect all granules in the request
Call InRequest::Resume(RequestID,GranuleID, ResultingAction), return status

ElseIf RequestState is equal to "recover"
Call InRequest::Recover(RequestID,GranuleID, ResultingAction), return status

Else
Notify operator of error ... invalid Request state is specified
Log error

Endif
Process error status returned from a RequestState function call

 Endif
Endif
Return
EndPDL

InRequest::CheckVolumeThreshold (EctInt GranuleID,RWString ResultingAction)

This function will verify that that request is not exceeding volume threshold (assigned by InRe-
questManager when the request was started) If thresholds will be exceeded, the routine will sus-
pend processing for n seconds (n is an MSS configuration parameter) then recheck thresholds. If
during the suspend, previously sent granules have released needed resources (network, cpu, ar-
chive), the request processing will continue, otherwise processing will suspend again.
BeginPDL
Do until processing can continue

Call InRequest:: CheckRequestState ... to check for cancel or suspend /resume set priority
control commands

B-24 305-CD-025-002

If ResultingAction is set to "Continue"
 Check granule volume variables in InGranuleServer_C object (singleton). Volume vari-

ables include: CurrentNetworkVolume, CurrentPreProcVolume, CurrentIn-
sertVolume

(Note: as Remote granule processing changes state (from transferring, to prepro-
cessing to inserting, InGranuleAsync_C will be notified so that current volume

variables can be updated.)
 If when this granule is activated, granule volume variables will exceed threshold allo-

cation
Sleep n seconds

 else
 Set processing can continue flag
 Endif

 Else
 Return
Endif

Enddo
Return
EndPDL

InRequest::CompleteRequestProcessing (EcTString ResultingAction)

This routine completes the request, ResultingAction can be set to Suspend, Cancel or Complete

Call InrequestProcessHeader::DetermineHeader... to determine if request completed successfully
or with errors and to build the DDN file or buffer. (DetermineHeader calls a stored procedure to
query InRequestProcessData and return a buffer of file info and file status). The stored procedure
will also update the InRequestProcessHeader with request status and request time statistics.

Process returned buffer to determine is a Short or Long DDN should be built.
Build short or long DDN
If ingest type is automatic network

Call DeleteAutomatedNetwork .. pass DDN pointer
Elseif ingest type is hard media

Call DeleteHardMedia .. pass in DDN pointer
Elseif ingest type is interactive

Call DeleteInteractive .. pass in DDN pointer
Elseif ingest type is polling

Call DeletePollingIngest .. pass in DDN pointer
else

Process error, notify operator, log
endif
Return
EndPDL

B-25 305-CD-025-002

InRequest::DeleteInteractiveIngest

Access user profile to determine status directory locations
Process error, notify operator and log, return
If Archive was successfull

Deallocate staging
Notify operator of error, log

 Delete Original files from user's directory
Notify operator of error, log

Else
Deallocate staging
Notify operator of error, log
Rename Original file to user's error directory (if necessary cleanup user's error directory

before rename)
Notify operator of error , log

Endif
Notify user via EMAIL of Ingest status (DDN file contents reported in Email MSG)
Process error, notify operator and log
Store DDN file in users's DDN directory using data type and date for file name

(the user will be able to view this file via the HTML interface)
Process error, notify operator and log
Return

InRequest::GetGranuleServerUR(InGranuleServer_C&, RWstring& GranuleDataType)

BeginPDL
Call InDataTypeTemplate:: GetGranuleServerUR(GranuleDataType)

...To get UR for the GranuleServer_S which will process the GranuleDataType
Process error status
Search RWlist containing GranuleServer_S URs which have already been processed

through this routine and therefor have existing InGranuleServer_C objects
If the needed UR is not in the RW list

Construct InGranuleServer_C (GranuleServerUR) object for the GranuleServer_S
found in the RW list... this is the client object

Else
Extract InGranuleServer_C Client object identifier from the RW list

Endif
Pass back InGranuleServer_C &
Return EcUtStatus

EndPDL

int InRequest::InRequest (DANmsg *DANmsgPtr)

Call InRequest::Check () to parse the PVL contents and check their validity
If (check is successful)

B-26 305-CD-025-002

Fill InRequest attributes
Call InRequestProcessHeader::InRequestProcessHeader to checkpoint request processing at-

tributes
Call InRequestProcessData::InRequestProcessData to checkpoint request data type processing

attributes
Call InRequestFileInfo::InRequestFileInfo to checkpoint request file processing attributes
Call InRequestSummaryHeader::InRequestSummaryHeader to checkpoint request summary

attributes
Call InRequestSummaryData::InRequestSummaryData to checkpoint data type summary at-

tributes
Return the object pointer (OID) for this object

Else
Return error status

endif

InRequest::InRequest (char *DANFile)

Construct InDAN class using pointer to the DAN file
If (InDAN construction indicates success)

Call InDAN::FillDAN() to read the DAN contents
Call InRequest::Check () to parse the PVL contents and check their validity
If (check is successful)

 Fill InRequest attributes
Call InRequestProcessHeader::InRequestProcessHeader to checkpoint request processing

attributes
Call InRequestProcessData::InRequestProcessData to checkpoint request data type pro-

cessing attributes
Call InRequestFileInfo::InRequestFileInfo to checkpoint request file processing attributes
Call InRequestSummaryHeader::InRequestSummaryHeader to checkpoint request sum-

mary attributes
Call InRequestSummaryData::InRequestSummaryData to checkpoint data type summary

attributes
Return the object pointer (OID) for this object

Else
Return error status

endif
Else

Return error status
end if

InRequest::ProcessRequest (EcTVoid)

Initiates the ingest processing. ProcessRequest consist of calling InGranuleServer_C for each
Data Type group (granule) in the request (DAN). InGranuleServer_C will send the granule re-
quest to InGranuleServer_S which in turn creates an InGranuleAsync_C and InGranuleAysnc_S

B-27 305-CD-025-002

to handle actual granule processing. ProcessRequest as it loops over all data types, will call
CheckVolumeThreshold. to check for resouce shortages. Once all granules have be sent off for
processing, ProcessRequest will wait for notification that all granules have been processed. Dur-
ing this wait, ProcessRequest would continue to monitor any changes to request state. When all
granules are completed, ProcessReqeust will call Delete to terminate request processing.

BeginPDL
Construct InDAN:object.

Call InDAN::CreateDANGranuleFiles... This routine will partition the DAN File into separated
DANGranule files where the Granule files containes all PVL statements needed for remote pro-
cessing of the granule

Get DataTypeList (Granule list) from MyDANfile ... note DataTypeList contains the data type Id
and the DANGranuleFile ID
For Each Data Type group entry

 Call CheckVolumeThreshold (RequestID, GranuleID, Resulting _Action) .. checks for and
processes suspend, recover/resume, or cancel control commands. Also determines if request
processing should be temporarily suspended due to resource shortages. CheckRequestState will
perform the temporary suspension if it is necessary.
 Process error status returned from CheckVolumeThreshold call

 If (ResultingAction is "SkipGranule" .. recovery/resume has been requested and this gran-
ule has already been completed

break - "go to next granule"
 elseif (ResultingAction is "Cancel or "Suspend... cancel or suspend has been requested
 Call CompleteRequestProcessing .. passiing in cancel, suspend or complete

return
 Else

Log error, notify operator, return
return

 Endif

 ...Continue with processing
 Call GetGranuleServerUR(myGranuleServer_C&, InDataTypeList(I).DANGranuleFileNa-
me)

... Note several data type granules can be serviced by a
single server so this routine will check first to
see if the server is already

exists. If not it will construct the server. An
InGranuleServer_C object will be passed back, EcUtStatus will be returned
 Process error: log error, notify operator, break to continue with next granule
 Call myGranuleServer_C. ProcessGranule ... to start asyncronous processing of the data type

granule

B-28 305-CD-025-002

 Process errror: log error, notify operator, continue with next granule
 End For
 Call WaitForCompletion
 Return
 EndPDL

InRequest::NotifyRemoteGranules (EctInt MsgType)

Based on MsgType, the appropriate InGranuleAsync_C function will be called. Note that all of
these functions are syncronous, so once this routine has completed, remote granule processing has
been notified.

Begin PDL

Do for all InGranuleList This is a RW list of pointers to all processing or completed granules, The
list also contains each granules state

If granule is not complete or has not failed....
Set GranuleObj to Get InGranuleAsync_C address from RW list

If MsgType is "Suspend"
Call InGranuleAsync_C::.Suspend

elseif MsgType is "Cancel"
Call InGranuleAsync_C:::Cancel

Elseif MsgType is "SetPriority"
Call InGranuleAync_C::SetPriority

Else
Log error ... invalid MsgType received
Notify Operator
Retrun

Endif
Construct GranuleRequestMsg.. set type to MsgType
Send InGranuleRequestServer_C::SendMsg (GranuleRequestMsg)

Endif
Enddo
Return
EndPDL

InRequest::Recover(EcTInt GranuleID, RWString ResultingAction)

Begin PDL
Call InRequestProcessData.GetGranuleStatefor Recover (RequestId,GranuleID,ResultingAction)

..to determine if the granule was completed prior to the request suspend or request abort or
if a resume has previously been attempted on the granule. This stored procedure will

also set myRetryFlag to 1
Return status from InRequestProcessData call ... ResultingAction is also set there

B-29 305-CD-025-002

End PDL

InRequest::Resume(EcTInt GranuleID, EcTInt ResultingAction)

Begin PDL
Call InRequestProcessData.GetGranuleState .. to determine if the granule was completed prior
to the request suspend.

If returned status is bad or indicates granule not found
log error appropriate error
Set EcUtStatus to Failed Granule
Return

Endif
If granule was completed
 Set ResultingAction to "SkipGranule"
Else
 Set ResultingAction to "Continue"
Endif
Return good status
End PDL

InRequest::SetPriority(RWString ResultingAction)

Begin PDL

Call InRequest.NotifyRemoteGranules(MsgType) .. to SetPriority of remote granule processing
If returned status is bad

Log error
Notify operator of failure
Return

Endif
Set ResultingAction to "continue"
Return status
End PDL

InRequest::Suspend(RWString ResultingAction)

Begin PDL
Call InRequest.NotifyRemoteGranules(RequestID, MsgType) .. to Suspend remote granule pro-
cessing
If returned status is bad

Log error, set "detail", so that a single message will go to operator when request cancel-
lation is complete

Return

B-30 305-CD-025-002

Endif
Set ResultingAction to "Suspend"
Return status
End PDL

InRequest::WaitForCompletion

BeginPDL
 Wait for CondSignal from granule pthread which will indicate all granules in request have
completed processing or been suspended or cancelled
 Call CheckRequestState (RequestID,GranuleID, ResultingAction)
 Process error status returned for CheckRequestState by logging error, notify operator, set
request status to complete, continue
 Call CompleteRequestProcessing .. passiing in cancel, suspend or complete

Return
EndPDL

InRequestController::CreateRequestList (RWString ControlCommand, RWList Request-
List)

This routine will determine if the request is for 1. a single request, 2. all requests for a single data
provider,
3. allrequests

BeginPDL
If ((suspend or resume or set priority) and (all requests for a single data provider or all requests))
 Do for all External Data Providers selected

If suspend or resume
Call InExternalDataProviders::UpdateState to update flag to Session that that its

session is suspended/resumed
else

Call InExternalDataProvider::UpdatePriority
Endif

Process error status (log, and notify operator)
 Enddo
Endif
Create list of requests to modify
Return
EndPDL

InRequestController::ProcessRequestStateChange(EcTInt RequestID, RWString State-
ControlCommand)

B-31 305-CD-025-002

This routine is activated when the operator issues a request control command from the Monitor and
Control GUI window

Begin PDL:

Based on State Control Command received, create list of requests to be control (this could be a sin-
gle request, all request for a single data provider or all requests in the system)

Call CreateRequestList (ControlCommand, RequestList&)

Do for each request in the request list
Call InRequestProcessHeader::UpdateStateForStateChange (RequestID, StateControl-

Command, NewPrioity, PreviousState)
If Detail error reference in EcUtStatus indicates failure

Failed to locate in DB
InvalidState change request (previous state was not compatable with new state)
Invalid request since prevrious state change has not completed
Other

 Report appropriate error message to operator
 Log error message
 Return
Endif
If Previous State is TapeSession and State ControlCommand is not "resume"
 Display operator message indicating suspend/cancel/setpriority should be en-

tered via status box on initiating GUI
Return

Endif

 Send RPC to InRequestManager to suspend/cancel/resume/setpriority.

Enddo .. over all requests

InRequestInfo::AddRequest(int DANSeqNum, int RequestId)

Check for duplicate DAN
If duplicate DAN not found
 Allocate memory for the new entry for the RequestInfo List
 Fill the new entry with RequestInfo
 Increment the Request count
EndIf
return

InRequestInfo::DeleteRequest(int DANSequenceNum)

set FOUND to false

B-32 305-CD-025-002

for each RequestInfo in the RequestInfo List
 if RequestInfo[i].DANSequenceNum = DANSequenceNum

 set FOUND to true
 exit the loop

 endif
end for
if FOUND is true
 delete i-th RequestInfo entry from the list
 decrement the RequestInfo count
else
 return no match
endif
return

InRequestInfo::GetRequestCount(int *RequestCount)

Get the total number of requests from the list

InRequestInfo::InRequestInfo()

Initialize the request list

InRequestInfo::InRequestInfo()

Initialize the request list

InRequestInfo::~InRequestInfo()

Delete any dynamically allocated memory

InRequestInfo::ListRequests()

For each request in the list
 print DANSeqNum and RequestId
 END for
 Print Total number of requests
 return

InRequestInfo::operator==(const InRequestInfo &r)

Defines an element in the RequestInfo list to be equal
 only if the DANSeqNum and RequestId match.

InRequestInfo::SearchRequest(int DANSequenceNum)

B-33 305-CD-025-002

Set Found to FALSE
For each entry in the RequestInfo List
 if RequestInfo.DANSequenceNUm = DANSequenceNum

 set FOUND to TRUE
 exit loop
 endif
endfor
return

int InRequestList::AddRequest(int *RequestID)

Add RequestID to list based on priority
Checkpoint RequestList to data base
return

int InRequestList::DeleteRequest(int *RequestID)

Delete RequestID from list
Checkpoint RequestList to data base
return

int InRequestList::SearchRequest(int *RequestID)

Find entry with specified RequestID in list
return

int InRequestManager_ C::CancelRequest(int* RequestID)

Call InRequest::Cancel () to cancel the request at its current state
return

DCEObjRefT* InRequestManager_ C::CreateRequest(DANmsg* DANmsgPtr)

Invoke the InRequestManager_S::CreateRequest service to create a distributed request object
return

DCEObjRefT* InRequestManager_S::CreateRequest(DANmsg* DANmsgPtr)

Create an InRequest object
return

int InRequestManager_S::InRequestManager()

BeginPDL

B-34 305-CD-025-002

Call InRequestManager_S::RestoreRequestList to determine if checkpointed requests are avail-
able and to resubmit them as needed

Listen for request creation or cancellation requests
If (a creation request is received)

Access MSS Configuration files to GetIngestPriority to get the priority for the specified request
Call InRequestManager_S::SetRequestThresholds
Create a pthread for the InRequest object
Call InRequest::InRequest to create a new request
Return to listening for a request

Elseif (StateChange request is received ...eg cancel suspend,resume, set priority)
Call InRequestManager::ProcessRequestStateChange to process the request
Return to listening for a request

Else
 Report an error to the operator and the log
endif
return
EndPDL

InRequestManager_S::SetRequestThresholds

BeginPDL
Access MSS configuration files to get external data provider_thresholds information
Access MSS configuration files to get systemThreshold information.
Access global current_provider_utilized (volume and total files)data for external data provider
Access global current_system_utilized (volume and total files)data for system
Calculate request allocation for volume and files
Return
EndPDL

InRequestManager::ProcessRequestStateChange(EctInt RequestID, RWString StateCon-
trolCommand)

BeginPDL
This is routine is called by ProcessRequest when an RPC sent from InRequestController GUI task
State Control Commands include cancel, suspend, resume, recover, set priority. Note recover
would be sent from InReqeustManager::Recover function.
Begin PDL

Locate correct InRequest object (.. currently how to do this is being investigated, multiple ap-
proaches are possible
If request could not be located ... request may have just completed
 Query InRequestProcessHeader to determine current state of request
 If request has just completed naturally.

Send informational message to the operator
Log message locally

B-35 305-CD-025-002

return
Endif

else.. request not found in data base or found and still active (why is it not accessible then)
Send error to operator indicating an invalid RequestID was sent
Log error
return

Endif
Else ... request located

Set myRequestState attribute in InRequest object... to new state
This will signal InRequest of state change

EndPDL

int InRequestManager_S::RestoreRequestList()

BeginPDL
Call InRequestProcessHeader::SearchTable to determine whether request information is check-

pointed in an active state ("request created", "data transferred", "data preprocessed", "data in-
sert submitted", "data insert completed")

For each checkpointed request
Access MSS configuration file to GetIngestPriority to get the priority for the specified request
Create a pthread for the InRequest object
Call InRequest::InRequest to create a new request

endfor
return
EndPDL

InRequestProcessData::GetGranuleStateForRecovery(EcTInt RequestID, EctInt Gran-
uleID, RWString ResultingAction)

Begin PDL
This function is implemented as a Sybase stored proceedure.

It determines if the granuleState is set to complete.
If not complete, it will check to see if the granule has been previously restarted.
If previously restarted set all file completion codes to RecoveryCausedAbortToRepeat to

indicated "twice caused ECS abort"
 Finally it sets myRetryFlag to 1 to flag this granule as having been previously restarted.

If Failed to find granule in database
set error return to Failed
Log Error
retrun

Endif
If not complete and myRetryFlag was 0 (not preeviously restarted)

Set ResultingAction to "Continue"

B-36 305-CD-025-002

ElseIf myRetryFlag was 1
Log informational message that this granule will not be restarted a second time
Set ResultingAction to "SkipGranule"

Endif

Return
EndPDL

InRequestProcessHeader::UpdateStateForStateChange (EcTInt RequestID, RWstring
StateControlCommand, EcTInt NewPrioity, RWstringm PreviousState)

Note: this query should call a stored procedure, which locks out access to the request header
record.
 If the request is still in session mode, the stored procedure will mark ist suspended or cancelled
(as requested). The session software will check to see if it has been cancelled or suspended before
sending it on to the request manager for processing

Possible RequestState values in InRequestProcessHeader
Session (still in session mode)Active (Managed by RequestManager)

SuspendingActive
Suspended
CancellingActive
Cancelled
RetainedWithErrors
Resuming

Possible Control Commands include
Suspend
Resume
Cancel
Mark Suspended
Mark Artive (Resumed)
Mark Cancelled

C Procedure::
Call stored procedure
If error return

Log error
Return error and previous state to caller (differentiating between Sybase/stored procedure

errors and Invaliid Control Request Errors
else

Send back success status to caller
Endif
Stored Procedure::

Lock access to request header record
Obtain previous state
If control command is not to mark active or mark cancelled or mark suspended and

B-37 305-CD-025-002

previous state control command has not completed, i.e. the request status is sus-
pending, resuming, cancelling)

Set failure status ... previous control command is not complete
Pass back previous setting
Return

Elseif
If control command is to suspend

if already suspended or suspending or cancelling or cancelled or Retained-
WithErrors

return error and previous state
else

if previous state is session
set state to suspended

else if previous state is active
set state to suspending ... InRequest will call to mark it sus-

pended
else

return error indicating invalid previous state
endif

endif
ElseIf control command is to mark suspended/mark active/ mark cancelled

 ... InRequest will issue thiese request (not the GUI)
If previous state is not marked suspending/ resuming/ cancelling (corre-

spondingly)
return error

else
set state to suspended/active/cancelled

endif
Elseif control command is to cancel

If previous state is suspended or retainedOnError or Session
set state to cancelled
call stored procedure to cancel the request

elseif prevous state is cancelled
return error

elseif previous state is active
set state to cancelling

else
return error

endif
Elseif control command is to resume

If previous state is suspended or retainedOnError
set state to resuming

else
return error

B-38 305-CD-025-002

endif
Else ... not valid Control Command

return error
Endif

Return
End PDL

InServer::InServer()

Initialize the SessionCount to zero.

InServer::StartServer()

Setup Ingest RPC Server:
 Create instance of the InServer object class
 (UUID can be automatically created by constructor or passed to

 the constructor)
 Register Object (Place info about the object in the private state)
 Listen and wait for client request
return

InSession::InSession()

Initialize the default constructor prototype

InSession::InSession(char *GatewayBH, char *ClientId, int SessionId)

Initialize the alternate constructor

InSession::~InSession()

Delete any dynamically allocated memory

InSession::InitSessServer(char *SessGWBH)

Setup Ingest RPC Session Server:
 Create instance of the InSession object class
 (UUID can be automatically created by constructor or passed to

 the constructor)
 Register Object (Place info about the object in the private state)
 Listen and wait for client request(DAN, DDA...)
return

B-39 305-CD-025-002

InSession::ProcessRequest(DANmsg *DAN, DAAmsg *DAA)

BeginPDL
Construct an InDAN object
Validate
InDAN::CheckpointRequest

From MSS configuration object::GetPriority to get the current request priority
Call InExternalDataProviderThreshold::GetState to get the current state of the external Data Pro-
vider
If State is equal to suspend

Set DAA status to indicate the request has failed (since ECS has suspended the External
DataProviders Session)

Set request failure status
return

Else
Send request to InRequestManager

Endif
Return
EndPDL

InSessionInfo::AddSession(char *NewClient, int SessPID)

Append Client and Session PID Information to file
Increment number of sessions open
return

InSessionInfo::DeleteSession(int SessionID)

set FOUND to false
open Ingest Session file
while not found or end-of-file not reached
 read a record
 match the session id field in the record
 If Session ID found
 delete the record from the file
 set FOUND to true
 decrement number of sessions active
 log client/session deletion
 else
 read next record
 endif
endwhile

B-40 305-CD-025-002

If not found
 log error - trying to delete non-existant session
endif
return (found)

InSessionInfo::ListSessions(void)

Open Session List file
for each session in the session file
 print SessionId and ClientID
end for
close file
return

InSessionInfo::SearchSession (char *CID)

set FOUND to false
open Ingest Session file
while not found or end-of-file not reached
 read a record
 match the ClientID field in the record
 If Client ID found
 set FOUND to true
 endif
endwhile
close file
return FOUND

InSessionInfo::SearchSession (int SessionId)

set FOUND to false
open Ingest Session file
while not found or end-of-file not reached
 read a record
 match the session id field in the record
 If Session ID found
 set FOUND to true
 endif
endwhile
close file
return FOUND

int InShortDAA::FillDAA(int DAAStatus, int DANSeqNo)

B-41 305-CD-025-002

If (DANSeqNo is greater than 0)
 Assign DANSeqNo to myShortDAA.DANSequenceNum
 Assign DAAStatus to myShortDAA.Disposition
Else
 Write invalid DAN Sequence Number into the event log
End if
Assign the byte size of ShortDAAmsg structure to ShortDAAmsgLen
Assign the least significant 3 byte of ShortDAAmsgLen
 to myShortDAA.MsgLength
return

int InShortDAA::GetDAA(ShortDAAmsg *DAAmsg, int DAAmsgLen)

Assign myShortDAA to DAAmsg
Call InMessage::GetMsgLength() and assign to DAAmsgLen
If (DAAmsgLen is <= zero)
 write Empty DAA data message into the event log
Endif
return

InShortDAA::InShortDAA()

Assign the lease significant byte of InCShortDAAType to myShortDAA.MsgType
Return

InShortDDN::FillDDN(int DDNStatus, int DANSeqNo)

If (DANSeqNo is greater than 0)
 Assign DANSeqNo to myShortDDN.DANSequenceNum
 Assign DDNStatus to myShortDDN.Disposition
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the byte size of ShortDDNmsg structure to ShortDDNmsgLen
Assign the least significant 3 byte of ShortDDNmsgLen
 to myShortDDN.MsgLength
return

InShortDDN::GetDDN(ShortDDNmsg *DDNmsg, int DDNmsgLen)

Assign myShortDDN to DDNmsg

B-42 305-CD-025-002

Call InMessage::GetMsgLength() and assign to DDNmsgLen
If (DDNmsgLe is <= zero)
 write Empty DAA data message into the event log
Endif
return

InShortDDN::InShortDDN()

Assign the lease significant byte of InCShortDDNType to myShortDDN.MsgType
Return

The Ingest Program Design Language (PDL) for non-trivial operations is included in this appen-
dix. The PDL is sorted by object class and by object class operation. C++ syntax is used to identify
object class operations (e.g., InBOMetadata::Preprocess indicates the Preprocess operation of the
InBOMetadata object class). The PDL follows the standards set up in the PDL Program Instruction
addendum to the Software Development Plan.

C-1 305-CD-025-002

Appendix C. Ingest Recovery Analysis

The following table lists major Ingest subsystem problem categories, their impact and
consequences, dependencies on other servers for recovery, the Ingest recovery action, and any
required user or operator action.

Table C-1. Ingest Problem Category, Problem Consequences, and Recovery
Actions (1 of 4)

Problem
Category

Impact/
Consequences

Dependency Ingest Recovery
Action

User/ Operator
Action

Ingest Gateway
client
unavailable
when Ingest
server
transmitting
Data
Availability Ack
(DAA)

Transparent to
Ingest other than
delay in completion
of DAA delivery

Server Request
Framework (SRF)
delivers DAA after
Ingest Gateway
recovers.

Ingest retries an
operator tunable
number of times,
then notifies
operator and
logs error.

None

Ingest Gateway
client
unavailable
when Ingest
server
transmitting
Data Delivery
Notice (DDN)

Transparent to
Ingest other than
delay in completion
of DDN delivery

Server Request
Framework (SRF)
delivers DDN after
Ingest Gateway
recovers.

Ingest retries an
operator tunable
number of times,
then notifies
operator and
logs error.

None

Data Server
unavailable
when insert
service ack or
callback
expected

Transparent to
Ingest other than
delay in completion
of data granule
insert

Server Request
Framework (SRF)
delivers insert ack or
callback after Data
Server recovers.

None Operator: detects
timeout of request if
insert is not
performed before
expiration date/time;
manual capability to
cancel request

Ingest Polling
Session fails

Transparent to
Ingest; no impact to
other ingest
requests

Detection of
process failure by
MSS agent

Periodic polling re-
initiated after MSS
Process
Framework (PF)
restart

Operator: receives
alert of failed
process; restarts
process after
diagnosis by
means of PF

Ingest Session
Manager
(Server/
Session
objects) fails

Delay of request
completion until
Session Manager
recovers; no new
ingest requests
accepted until after
recovery

Detection of
process failure by
MSS agent

Session Manager
recovers from
checkpointed
information after
MSS Process
Framework (PF)
restart

Operator: receives
alert of failed
process; restarts
process after
diagnosis by
means of PF

C-2 305-CD-025-002

Problem
Category

Impact/
Consequences

Dependency Ingest Recovery
Action

User/ Operator
Action

Ingest Request
Manager
(Request
Manager/
Request
objects) fails

Delay of all request
completions until
Request Manager
recovers

Detection of
process failure by
MSS agent

Request Manager
recovers from
checkpointed
information after
MSS Process
Framework (PF)
restart

Operator: receives
alert of failed
process; restarts
process after
diagnosis by
means of PF

Ingest Granule
Server
(Granule
Server/
Granule
objects) fails

Delay of granule
completion (and
related request
completion) until
Granule Manager
recovers

Detection of
process failure by
MSS agent

Granule Manager
recovers from
checkpointed
information after
MSS Process
Framework (PF)
restart

Operator: receives
alert of failed
process; restarts
process after
diagnosis by
means of PF

UNIX signals
(e.g., numeric
fault)

Abort of affected
Ingest process

Detection of
process failure by
MSS agent

Ingest server
recovers from
checkpointed
information after
MSS Process
Framework (PF)
restart

Operator: receives
alert of failed
process; Sustaining
Engineering
diagnoses using
Ingest event log
and UNIX core
dump files; restarts
process after
diagnosis by
means of PF

Ingest
processor
failure

Abort of Ingest
processes running
on processor

Detection of
processor failure by
MSS agent

Ingest processes
recover from
checkpointed
information (as
described above)
after MSS Process
Framework (PF)
restart

Operator: receives
alert of failed
process; restarts
process after
diagnosis by
means of PF

ftp fault
(polling)
(NESDIS
SAA, DAO,
DAACs,
EDOS, other
data providers)

No recovery of
current request;
polling is retried at
next interval; no
other Ingest
request affected

None None Operator: receives
alert of ftp failure;
diagnoses problem
and communicates
with external data
provider

ftp fault (DAN
ingest)
(TSDIS, SDPF,
Landsat-7
LPS, other
data providers)

No recovery of
current request; no
other Ingest
request affected

None Reports failure to
external data
provider by means
of DDN

Operator: receives
alert of ftp failure;
diagnoses problem
and communicates
with external data
provider

Table C-1. Ingest Problem Category, Problem Consequences, and Recovery
Actions (2 of 4)

C-3 305-CD-025-002

Problem
Category

Impact/
Consequences

Dependency Ingest Recovery
Action

User/ Operator
Action

Sybase fault:
templates
needed for
preprocessing
granule
cannot be
accessed

No recovery of
current request;
subsequent
requests fail if
template
information not
available

None--assume
Sybase switchover
to secondary server
fails

None--this failure
occurs very rarely

Operator: receives
alert of DB access
failure; diagnoses
problem and
restarts Sybase as
needed

Sybase fault:
DB update of
Ingest History
summary log
or
checkpointing
log could not
be completed

Transparent to
Ingest;
checkpointing and
summary
information not
retained until
recovery performed

None--assume
Sybase switchover
to secondary server
fails

None--this failure
occurs very rarely

Operator: receives
alert of DB access
failure; diagnoses
problem and
restarts Sybase as
needed

Loss of Sybase
transaction log

No impact to
ongoing Ingest
requests

Sybase switchover
to mirrored
transaction log disk

None Operator: receives
Sybase notification
of switchover

Metadata
validation
failure with
abort (e.g.
Constraints
fault,
subscription
out of range)

No impact to
ongoing ingest
requests

None Reports failure of
data granule to
data provider

Operator: receives
alert of metadata
validation failure;
resolves with data
provider

Unable to
allocate disk
space

Delay of current
request until disk
space available; no
impact to other
requests

Data Server
queues requests
for disk space and
satisfies when disk
space is available

None Operator: reviews
status of disk space
allocations

Disk crash
(working
storage disk
managed by
Data Server
and used by
Ingest for data
granule
preprocessing)

Failure of ongoing
granule processing
occurring on the
failed disk (note:
this failure occurs
rarely, since RAID-
5 is used for
working storage)

MSS agent detects
and reports on disk
failure

Reports failure to
external data
provider by means
of DDN

Operator: receives
notification of disk
failure; uses Data
Server services to
diagnose and fix
disk failure

Ingest media
or media
peripheral
failure
(hardware
controlled by
Data Server)

Failure of affected
ingest request; no
impact to other
ongoing requests

None None Operator: receives
notification of
media or media
peripheral failure;
uses Data Server
services to
diagnose and fix;
resubmits media
ingest request

Table C-1. Ingest Problem Category, Problem Consequences, and Recovery
Actions (3 of 4)

C-4 305-CD-025-002

Problem
Category

Impact/
Consequences

Dependency Ingest Recovery
Action

User/ Operator
Action

Unable to
deliver email
message

Transparent to
Ingest; no impact to
ongoing requests

ECS mail server
queues email
message for
delivery

None None

GUI - Invalid
User I/F
Screen Input

Transparent to
Ingest

None Rejects invalid
input when
detected (note:
many fields provide
a selection list of
valid input)

User: reenters valid
input

Table C-1. Ingest Problem Category, Problem Consequences, and Recovery
Actions (4 of 4)

AB-1 305-CD-025-002

Acronyms and Abbreviations

ADC Affiliated Data Center

AM-1 EOS AM Project (morning spacecraft series)

APID Application Identifier

ASCII American Standard Code for Information Interchange

ASF Alaska SAR Facility (DAAC)

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATL Automated Tape Library

ATM Asynchronous Transfer Mode

AVHRR Advanced Very High-Resolution Radiometer

CDR Critical Design Review

CDRL Contract Data Requirements List

CD-ROM Compact Disk - Read Only Memory

CERES Clouds and Earth's Radiant Energy System

CGI Common Gateway Interface

CI Configuration Item

CIESIN Consortium for International Earth Science Information Network

COTS Commercial-off-the-shelf

CPU Central Processing Unit

CSC Computer System Components

CSCI Computer Software Configuration Item

CSMS Communications and Systems Management Segment (ECS)

DAA DAN Acknowledge

DAAC Distributed Active Archive Center

DAN Data Availability Notice

DAO Data Assimilation Office

DBMS Database Management System

DCE Distributed Computing Environment (OSF)

DDA Data Delivery Acknowledgment

DDN Data Delivery Notice

DID Data Ingest Distribution

DID Data Item Description

AB-2 305-CD-025-002

DIPHW Distribution and Ingest Peripheral Management HWCI

DPRHW Data Repository HWCI

DPS Data Processing Subsystem

DSS Data Server Subsystem

EBnet EOSDIS Backbone network

Ecom EOSDIS communications system

ECS EOSDIS Core System

EDC EROS Data Center (DAAC)

EDOS EOS Data and Operations System

EDR Environmental Data Record

EGS EOS Ground System

EOC EOS Operations Center (ECS)

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FNL Final Analysis and Forecast System, Global Analysis

FSMS File Storage Management System

FIP File Transfer Protocol

GB Gigabyte

GDAO GSFC Data Assimilation Office

GPCP Global Precipitation Climatology Project

GPI GOES Precipitation Index

GRIB Gridded Binary

GSFC Goddard Space Flight Center

GUI Graphic User Interface

GVTRMM Ground Verification Tropical Rainfall Measuring Mission

H/K Housekeeping

HDF Hierarchical Data Format

HiPPI High Performance Parallel Interface

HTML Hyper-Text Markup Language

HTTP Hypertext Transport Protocol

HWCI Hardware Configuration Item

I/F Interface

I/O Input/Output

AB-3 305-CD-025-002

IAS Image Assessment System (Landsat-7)

IAS Instrument Activity Specification

ICD Interface Control Document

ICLHW Ingest Client HWCI

ID Identification

IDR Interim Design Review

IGS International Ground Station

IP International Partners

IR-1 Interim Release-1

IRD Interface Requirements Document

ISSCP International Satellite Cloud Climatology Project

JPL Jet Propulsion Laboratory

L0 Level-0

LaRC Langley Research Center (DAAC)

LIS Lightning Imaging Sensor

LOM Logical Object Model

Mb Mega bit

MB Mega byte

Mbps Mega bits per second

MCF Metadata Configuration File

MISR Multi-Angle Imaging SpectroRadiometer

MOC Mission Operations Center

MODIS Moderate-Resolution Imaging SpectroRadiometer

MRF Medium Range Forecast

MSFC Marshall Space Flight Center

MSS Management Subsystem

MTBF Mean Time Between Failure

MTTR Mean Time To Restore

NESDIS National Environmental Satellite, Data, and Information Service (NOAA)

NMC National Meteorological Center (NOAA)

NMC Network Management Center

NOAA National Oceanic and Atmospheric Administration

NOLAN Nascom Operational Local Area Network

NSIDC National Snow and Ice Data Center (DAAC)

OODCE Object Oriented DCE

AB-4 305-CD-025-002

ORNL Oak Ridge National Laboratory (DAAC)

PDL Program Design Language

PDR Preliminary Design Review

PDS Production Data Set

POAM-II Polar Ozone and Aerosol Experiment

PS Project Scientist

PVL Parameter Value Language

QA Quality Assurance

RAID Redundant Array of Inexpensive Disks

RID Review Item Discrepancy

RMA Reliability, Maintainability, Availability

RPC Remote Procedure Call

SAGE II Stratospheric Aerosol and Gas Experiment

SCF Science Computing Facility

SCSI Small Computer System Interface

SDPF Sensor Data Processing Facility (GSFC)

SDPS Science Data Processing Segment (ECS)

SDR System Design Review

SDSRV Science Data Server CSCI

SFDU Standard Format Data Unit

SMC System Management Center (ECS)

SMP Symmetric Multi-Processing

SNMP Simple Network Management Protocol

SSM/I Special Sensor for Microwave/Imaging

STMGT Storage Resource Management

TBD To Be Determined

TBR To Be Replaced

HDF Hierarchical Data Format

TBS To Be Supplied

TCP/IP Transmission Control Protocol/Internet Protocol

TDRSS Tracking and Data Relay Satellite System

TOMS Total Ozone Mapping Spectrometer

TRMM Tropical Rainfall Measuring Mission (joint US-Japan)

TSDIS TRMM Science Data and Information System

UR Universal Referencev

AB-5 305-CD-025-002

UUID Universal Unique Identifier

W/S Workstation

WKSHW Working Storage HWCI

WWW World Wide Web

AB-6 305-CD-025-002

This page intentionally left blank.

GL-1 305-CD-025-002

Glossary

advertisement A text description that announces the availability of ECS data
or services to ECS users.

advertising service Through the advertising service, users can search and query
descriptions of the data and services available in the network.
This data is called advertisements. It is prepared by the data
and/or service providers.

affiliated data center
(ADC)

A facility not funded by NASA that processes, archives, and
distributes Earth science data useful for global change
research, with which a working agreement has been negotiated
by the EOS program. The agreement provides for the
establishment of the degree of connectivity and
interoperability between EOSDIS and the ADC needed to
meet the specific data access requirements involved in a
manner consistent and compatible with EOSDIS services.
Such data-related services to be provided to EOSDIS by the
ADC can vary considerably for each specific case.

ancillary data Data other than instrument data required to perform an
instrument’s data processing. They include orbit data, attitude
data, time information, spacecraft engineering data,
calibration data, data quality information, and data from other
instruments.

application identifier
(APID)

The number assigned by spacecraft mission management that
represents the on-board application that generated the
telemetry data.

application software Programs designed for specific functions, such as payroll,
accounts payable, inventory control, or property management,
generally consisting of source code and object code databases,
procedures, and documentation

archive tape library Archive robotics unit

authorized user see user, authorized

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures
divided by the sum of the mean time between failures and the
mean down time [before restoration of function].)

GL-2 305-CD-025-002

baseline Identification and control of the configuration of software (i.e.
selected software work products and their descriptions) at
given points in time.

binary file A data file whose contents are in binary form (i.e., not
encoded)

browse data product Subsets of a larger data set, other than the directory and guide,
generated for the purpose of allowing rapid interrogation (i.e.,
browse) of the larger data set by a potential user. For example,
the browse product for an image data set with multiple spectral
bands and moderate spatial resolution might be an image in
two spectral channels, at a degraded spatial resolution. The
form of browse data is generally unique for each type of data
set and depends on the nature of the data and the criteria used
for data selection within the relevant scientific disciplines.

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software
routines, and ground truth data that are to be used in the data
calibration processing routine.

CCSDS
recommendations

Recommendations for spacecraft telemetry and telecommand
packet format and protocol made by the Consultative
Committee for Space Data Systems.

client A software component that sends or issues service requests to
ECS servers or service providers; a requester of service.

client session see SESSION

commercial off the shelf
(COTS)

COTS is a product, such as an item, material, software,
component, subsystem, or system, sold or traded to the general
public in the course of normal business operations at prices
based on established catalog or market prices (see FAR
15.804-3(c) for explanation of terms.

component The next lower functional subdivision below "subsystem" in
the ECS functional hierarchy.

computer software
component (CSC)

A distinct part of a computer software configuration item.
CSCs may be further decomposed into other CSCs and
computer software units.

computer software
configuration item
(CSCI)

A configuration item comprised of computer software
components and computer software units.

GL-3 305-CD-025-002

configuration The functional and physical characteristics of hardware,
firmware, software or a combination thereof as set forth in
technical document and achieved in a product.

configuration item (CI) An aggregation of hardware, firmware, software or any of its
discrete portions, which satisfies an end use function and is
designated for configuration management.

Critical Design Review
(CDR)

A detailed review of the element/segment-level design,
including such details as program design language for key
software modules, and element interfaces associated with a
release.

DAAC see Distributed Active Archive Center

DAAC-unique Functions and capabilities provided by the DAAC beyond
those provided by the core system. The functions will be
integrated with ECS via APIs for other similar mechanisms.
Examples of DAAC-unique functions include visualization,
specialized interfaces, and data set-unique functionality.

Data Archive And
Distribution System
(DADS)

Included in each DAAC and responsible for archiving and
distribution of EOS data and information.

data availability
acknowledgment

Status return when a data availability notice cannot be satisfied
(e.g., due to a validation error or transmission error).

data availability notice Notice form a client of data available for ingest.

data availability
schedule

Data availability schedule is a schedule indicating the times at
which specific data sets will be available from remote DADS,
EDOS, the international partners, the ADCs, and other data
centers for ingestion by the collocated DADS. The schedules
are received directly by the PGS.

data center A facility storing, maintaining, and making available data sets
for expected use in ongoing and/or future activities. Data
centers provide selection and replication of data and needed
documentation and, often, the generation of user tailored data
products.

data ingest request Request to ingest data.

GL-4 305-CD-025-002

data product Data products consist of Level 0 data or Level 1 through Level
4 data products obtained by the PGS from the collocated
DADS. These represent the primary input to the product
generation process.

A collection (1 or more) of parameters packaged with
associated ancillary and labeling data, uniformly processed
and formatted. Typically uniform temporal and spatial
resolution. (Often the collection of data distributed by a data
center or subsetted by a data center for distribution.) There are
two types of data products:

a.Standard: A data product produced at a DAAC by a
community consensus algorithm. Typically produced for a
wide community. May be produced routinely or on-demand.

data product levels Raw data--Data in their original packets, as received from the
observer, unprocessed by EDOS.

• Level 0--Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

• Level 1A--Reconstructed unprocessed instrument data at full
resolution, time referenced, and annotated with ancillary
information, including radiometric and geometric calibration
coefficients and georeferencing parameters (i.e. platform
ephemeris) computed and appended, but not applied to Level
0 data.

• Level 1B--Radiometrically corrected and geolocated Level
1A data that have been processed to sensor units.

• Level 2--Derived geophysical parameters at the same
resolution and location as the Level 1 data.

data server Either the data server subsystem as a whole, or a specific
instance of a data server. A data server is a (hardware/
software) entity that accepts, stores, and distributes EOS (and
other) data, for both other subsystems within ECS and external
users.

data server insert request Request to insert data into a data server.

data set A logically meaningful grouping or collection of similar or
related data.

data type A particular type of data handled by a particular data server.
An example of a data type might be MODIS Level 1a
products, etc.

GL-5 305-CD-025-002

data type taxonomy A classification of earth science and related data into types.

definitive attitude data Down-linked attitude data received with Level 0 data.

definitive orbit data Down-linked orbit (ephemeris) data received with level 0 data.

delivered algorithm
packages

The full content of data and information delivered by a data
producer during the process of standard product Algorithm
Integration & Test, including all elements defined as minimum
content within Volume 4 of the Science User's Guide,
available at PDR.

Distributed Active
Archive Center (DAAC)

An EOSDIS facility which generates, archives, and distributes
EOS Standard Products and related information for the
duration of the EOS mission. An EOSDIS DAAC is managed
by an institution such as a NASA field center or a university,
per agreement with NASA. Each DAAC contains functional
elements for processing data (the PGS), for archiving and
disseminating data (the DADS), and for user services and
information management (elements of the IMS).

ASF -- Alaska SAR Facility

EDC -- EROS Data Center

GSFC -- Goddard Space Flight Center

JPL -- Jet Propulsion Laboratory

EDOS data unit (EDU) The message packet generated by EDOS that contains the
reconstructed spacecraft telemetry packet.

engineering data All data available on-board about health, safety, environment,
or status of the spacecraft and instruments.

• housekeeping data: The subset of engineering data required
for mission and science operations. These include health and
safety, ephemeris, and other required environmental
parameters.

• instrument engineering data: All non-science data provided
by the instrument.

• platform engineering data: The subset of engineering data
from platform sensor measurements and on-board
computations.

• spacecraft engineering data: The subset of engineering data
from spacecraft sensor measurements and on-board
computations.

GL-6 305-CD-025-002

EOS Data and
Operations System
(EDOS) production data
set

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission artifacts
removed, in time order, with duplicate data removed, and with
quality/ accounting (Q/A) metadata appended. Time span, or
number of packets, encompassed in a single data set are
specified by the recipient of the data. These data sets are
equivalent to Level 0 data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual
packet and the data set itself and with essential formatting
information for unambiguous identification and subsequent
processing.

ephemeris data See "orbit data"

external data provider An external data source providing data to be ingested in SDPS.

format Format of data -- ASCII, binary, etc.

granule The smallest aggregation of data that is independently
managed (i.e., described, inventoried, retrievable). Granules
may be managed as logical granules and/or physical granules.

granule location The name of the product where this granule is located.

hardware That combination of subcontracted, COTS, and government
furnished equipment (e.g., cables and computing machines)
that are the platforms for software.

hardware configuration
item (HWCI)

A configuration item comprised of hardware components.

HDF file A data file whose format follows the NCSA Hierarchical Data
Format standard, as well as ECS-developed extensions
thereto.

I/O access A read or write by a process to a data file.

ingest status request Request for status on a data ingest request.

insert request Request to insert data into the archive.

interface classes The interfaces offered by a class of objects or object
collections. User, for example, in the context of Service
Classes to denote the collection of interfaces supported by this
service class.

interface definition
language (IDL)

IDL provides uniform semantics for all interfaces.

GL-7 305-CD-025-002

interface(s) The functional and physical characteristics required to exist at
a common boundary.

maintainability The measure of the ability of an item to be retained in or
restored to a specified condition when maintenance is
performed by personnel having specified skill levels, using
prescribed procedures and resources, at each prescribed level
of maintenance and repair. (The probability that maintenance,
both corrective and preventive, can be performed in a
specified amount of time using a specified set of prescribed
procedures and resources expressed as MTTR).
Maintainability is the function of design.

mean down time (MDT) Sum of the mean time to repair MTTR, plus the average
administrative logistic delay times.

mean time between
failure (MTBF)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/
operating time.

mean time to repair
(MTTR)

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design
parameters. It is a basic measure of maintainability: The sum
of corrective maintenance times at any specific level of repair,
divided by the total number of failures within an item repaired
at that level, during a particular interval under stated
conditions.

metadata Information about data sets which is provided to the ECS by
the data supplier or the generating algorithm and which
provides a description of the content, format, and utility of the
data set. Metadata may be used to select data for a particular
scientific investigation. It is “data about data” used to
facilitate database searches. Types of metadata include:
product metadata (data describing a particular product, such as
when it was generated, etc.) and algorithm metadata (data
describing science software)

object Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are identified
by client via unique reference.

object implementation Code and data that realizes target object's behavior.

operations personnel Same as operations staff.

GL-8 305-CD-025-002

operations staff Generic term for personnel who have the responsibility to
operate, monitor, and control SDPS. Also can be, one of the
DAAC operations staff assigned to the ingest or data server
subsystems, i.e., Data Archive Analyst, Data Ingest
Technician, Data Distribution Technician, Data Base
Administrator, etc.

orbit data Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of
mass of the Earth); a corresponding statement about the
accuracy of the position and the corresponding time of the
position (including the time system); some accuracy
requirements may be hundreds of meters while other may be a
few centimeters.

p = v metadata Label = value where label is a field name and value is either a
single value or list of values.

Parameter Value
Language

Also expressed as “PVL”. A P=V metadata language used to
package metadata for storage in the Data Server subsystem.

Preliminary Design
Review (PDR)

PDR is held for each ECS Segment. The PDR addresses the
design of the segment-level capabilities and element interfaces
through all ECS releases. The PDR also addresses prototyping
results and how the results of both Contractor and Government
prototyping efforts, studies, and user experience with EOSDIS
Version 0 have been incorporated into the ECS design for each
respective Segment.

process An executing program.

PVL See Parameter Value Language

quick-look data Data received during one TDRSS contact period which have
been processed to Level 0 (to the extent possible for data from
a single contact).

reliability Reliability is the function of design. It is the probability that
system/equipment will operate within design parameters
under stated conditions, for a specified interval expressed as
MTBF.

report Documentation of some automated (such as standards
checking) or manual (such as evaluation of a science software
delivery) activity.

requirement A statement to which the developed system must comply.
Varieties of requirements: Levels 2, 3, 4; performance,
functional, design, interface.

GL-9 305-CD-025-002

requirements traceability There are three recognized levels of requirements on the ECS
Project:

• ESDIS (Level 2)

• ECS System (Level 3)

• ECS Detailed Subsystem (Level 4)

Traceability is the verification and validation of the parents
and children of ECS Levels 2,3,4 requirements down to
release and subsystem levels. Analysis is done by the ECS
Project System and Subsystem engineering.

reusable software Software developed in response to the requirements for one
application that can be used, in whole or in part, to satisfy the
requirements of another application.

scenario A description of the operation of the system in user’s
terminology including a description of the output response for
a given set of input stimuli. Scenarios are used to define
operations concepts.

science user A user the SDPS from the scientist community or other user
community that originates service requests.

SDP Toolkit A set of SDPS-standard API between science algorithms and
the process execution service for status reporting and process
control

server A software component that receives and executes service
requests (e.g., the LIM, the DIM, the data server, the PLANG
CI).

service A grouping of functional requirements as listed in a
specification. For example, in the Level 3 requirements, IMS
“services” are System Access, Information Search, etc.

GL-10 305-CD-025-002

session The logical context assigned to a user or a client in which a set
of service requests are performed. Sessions associate and
manage the resources and results sets that are allocated and
generated as a result of the processing of service requests. A
session retains information associated with the execution of
service requests so that it is accessible to subsequent service
requests. Service requests may utilize resources and results
sets allocated and produced by other service requests
belonging to the same session. Service requests issued in the
context of one session cannot utilize the resources managed by
another session. There are two kinds of sessions, client
sessions and user sessions.

Sessions have the following states:

a.Active: The session is established and will allow service
requests to allocate and access session resources.

session, client A client session supports interactions between a client and a
server. Client sessions associate and manage the resources
and results sets that are allocated and generated by the server.

simulated data ...same as test data

status Status is information regarding schedules, hardware and
software configuration, exception conditions, or processing
performance. This information is exchanged with the DADS,
and is provided to the system management center (SSMC).
The SSMC may also receive information regarding schedule
conflicts that have not been resolved with the IMS.

status request Request for status of archive insert and retrieval requests (also
need this for ingest and distribution).

universal reference A uniform model for referencing objects throughout SDPS
which each SDPS service will understand and support.

GL-11 305-CD-025-002

user • Any person accessing the EOSDIS.

• Authorized users are users who have viable EOSDIS
accounts, and who may therefore make EOSDIS data requests.
These users may be affiliated or unaffiliated. Affiliated users
are those who are sponsored by one of the parties to the Earth
Observations-International Coordination Working Group
(EAU-ICWG) data policy. Each party is responsible for
ensuring that all its affiliated users comply with the EO-ICWG
data policy. Use of data by affiliated users is classified in one
of three categories, defined in the EO-ICWG data policy:

+ Research Use: A study or an investigation in which the user
affirms (1) the aim is to establish facts or principles; (2) the
data will not be sold or reproduced or provided to anyone not
covered by this or another valid affirmation; (3) the results of
the research will be submitted for publication in the scientific

World Wide Web
browser

Software (local or remote) that allows a user to Access the
WWW either textually or graphically. WWW is a mechanism
for connecting Internet via a set of hypertext documents.

GL-12 305-CD-025-002

This page intentionally left blank.

	Preface
	Abstract
	Change Information Page
	Contents
	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Document Organization
	1.4 Status and Schedule

	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents Not Referenced

	3. Ingest Subsystem Overview
	3.1 Introduction and Context
	3.1.1 Ingest Subsystem Context Diagram

	3.2 Ingest Subsystem Overview
	3.2.1 Ingest Subsystem Configuration Item (CI) Lis...
	3.2.2 Ingest Subsystem Design Rationale
	3.2.3 Ingest Subsystem Design Paradigms
	3.2.4 Ingest Subsystem Use of Key Design Mechanism...
	3.2.5 Ingest Subsystem Key Design Features

	4. INGST - Ingest CSCI
	4.1 CSCI Overview
	4.2 CSCI Context
	4.3 Ingest CSCI Object Model
	4.3.1 CsGateWay Class
	4.3.2 DsCIDescriptor Class
	4.3.3 DsClRequest Class
	4.3.4 DsGlParameter Class
	4.3.5 DsGlParameterList Class
	4.3.6 DsStResourceProvider Class
	4.3.7 DsStagingDisk Class
	4.3.8 EcPFManagedServer Class
	4.3.9 InBOBinMetadata Class
	4.3.10 InBOMetadata Class
	4.3.11 InDAN Class
	4.3.12 InDBAccess Class - This class provides serv...
	4.3.13 InDataPreprocessList Class
	4.3.14 InDataPreprocessTask Class
	4.3.15 InDataServerInsertionTask Class
	4.3.16 InDataTransferTask Class
	4.3.17 InDataTypeTemplate Class
	4.3.18 InExternalDataProviderInfo Class
	4.3.19 InFDFData Class
	4.3.20 InFile Class
	4.3.21 InFileTypeTemplate Class
	4.3.22 InGRIBData Class
	4.3.23 InGUISession Class
	4.3.24 InGranuleAsync_CB Class
	4.3.25 InGranuleAsync_SB Class
	4.3.26 InGranuleMessageB Class - This class is the...
	4.3.27 InGranuleServer_CB Class
	4.3.28 InGranuleServer_SB Class
	4.3.29 InHDFMetadata Class
	4.3.30 InHistoryLog Class
	4.3.31 InIngestMainWindow Class
	4.3.32 InInteractiveIngestB Class
	4.3.33 InLongDAA Class
	4.3.34 InLongDDN Class
	4.3.35 InMediaIngest Class
	4.3.36 InMessage Class
	4.3.37 InMetadata Class
	4.3.38 InNextAvailableID Class
	4.3.39 InPVMetadata Class
	4.3.40 InPollingIngestSession Class
	4.3.41 InPollingThreshold Class
	4.3.42 InReformatData Class
	4.3.43 InRequest Class
	4.3.44 InRequestController Class
	4.3.45 InRequestFileInfo Class
	4.3.46 InRequestManager Class
	4.3.47 InRequestManager_C Class
	4.3.48 InRequestManager_S Class
	4.3.49 InRequestProcessData Class
	4.3.50 InRequestProcessHeader Class
	4.3.51 InRequestSummaryData Class
	4.3.52 InRequestSummaryHeader Class
	4.3.53 InSDMetadata Class
	4.3.54 InScienceData Class
	4.3.55 InServer Class
	4.3.56 InServerExtRPC_C Class
	4.3.57 InServerExtRPC_S Class
	4.3.58 InServerIntRPC_C Class
	4.3.59 InServerIntRPC_S Class
	4.3.60 InSession Class
	4.3.61 InSessionEcsRPC_C Class
	4.3.62 InSessionEcsRPC_S Class
	4.3.63 InSessionExtRPC_C Class
	4.3.64 InSessionExtRPC_S Class
	4.3.65 InSessionInfo Class
	4.3.66 InSessionIntRPC_C Class
	4.3.67 InSessionIntRPC_S Class
	4.3.68 InShortDAA Class
	4.3.69 InShortDDN Class
	4.3.70 InSnowIceData Class
	4.3.71 InSourceMCF Class
	4.3.72 InTOMSData Class

	4.4 Ingest CSCI Dynamic Model
	4.4.1 Automated Network Ingest (Get) Scenario
	4.4.2 Polling Ingest (Files) Scenario
	4.4.3 Polling Ingest (Delivery Record) Scenario
	4.4.4 Interactive Ingest Scenario
	4.4.5 Hard Media Ingest Scenario
	4.4.6 Ingest History Log Viewing Scenario
	4.4.7 Operator Ingest Status Monitoring Scenario
	4.4.8 Interactive Ingest Operator Status Monitorin...
	4.4.9 Operator Request Control Scenario
	4.4.10 Preprocessing Scenario

	4.5 CSCI Structure
	4.5.1 Automatic Network Ingest Interface
	4.5.2 Polling Ingest Client Interface CSC
	4.5.3 Ingest Request Processing CSC
	4.5.4 Ingest Data Transfer CSC
	4.5.5 Ingest Data Preprocessing CSC
	4.5.6 Operator Ingest Interface CSC
	4.5.7 Interactive Ingest Interface CSC
	4.5.8 Ingest DBMS CSC
	4.5.9 Ingest Administration Data CSC
	4.5.10 Peripherals CSC
	4.5.11 Viewing Tools CSC
	4.5.12 Data Storage Software CSC
	4.5.13 Resource Administration CSC
	4.5.14 Client Interfaces CSC

	4.6 Ingest CSCI Management and Operation
	4.6.1 System Management Strategy
	4.6.2 Operator Interfaces
	4.6.3 Ingest Production Reports
	4.6.4. Sustaining Engineering Interface to Data Pr...

	5. ICLHW - Ingest Client HWCI
	5.1 Introduction
	5.1.1 HWCI Design Drivers
	5.1.2 HWCI Structure
	5.1.3 Failover and Recovery Strategy

	Appendix A. Requirements Trace
	Appendix B. Program Design Language (PDL)
	Appendix C. Ingest Recovery Analysis
	Acronyms and Abbreviations
	Glossary

